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Enjeux et problématique

Objectifs

Objectif (Définir une structure)

Se donner un cadre de travail avec :

l’ensemble des nombres que l’on va chercher à manipuler

les opérations que l’on a le droit ou pas de faire

Objectif (Choisir une représentation)

Transformer les nombres que l’on veut manipuler en données, suivant deux critères :

être fidèle : elle représente le plus de nombres possible, le plus précisément possible, et
deux nombres (très) différents ont des représentations (très) différentes

être manipulable : les opérations se font efficacement

Remarque

On cherche en fait à modéliser les nombres par un ordinateur. À la manière des modèles
(mathématiques ou physiques) qui doivent être en accord avec une réalité, la représentation des
nombres doit être conforme à :

l’usage qu’on en fait (aspect manipulable)

l’idée qu’on s’en fait (aspect fidèle)
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Représenter les entiers Numération suivant une base

Numération suivant une base
Théorème-Définition

Étant donné b ∈ N avec b > 1, tout entier n ∈ N peut s’écrire de manière unique sous la forme :

n =
+∞∑
k=0

nk bk

où pour tout k ∈ N on a : nk ∈ {0, . . . , b − 1}.
Les nk ainsi définis forment une suite nulle à partir d’un certain rang, que l’on note p ∈ N∗, et
constituent l’écriture de n en base b, ce que l’on note comme :

n(b) = np−1np−2 . . . n0.

Démonstration.

Par divisions euclidiennes successives.

Exemples

On a les choix de b suivants qui reviennent souvent :

b = 2 : le système binaire, très fréquent en informatique

b = 10 : le système décimal, qu’on utilise tous les jours

b = 16 : le système hexadécimal, très utilisé aussi en informatique, où l’on note les chiffres
0, 1, . . . , 9,A,B,C,D,E ,F (pour avoir en un seul caractère les valeurs de 0 à b − 1 = 15).

Les Babyloniens comptaient en base 60, et les Gaulois en base 20.
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Représenter les entiers Numération suivant une base

Numération suivant une base

Proposition

Avec les notations précédentes, pour tout k ∈ N, le nombre nk est le reste de la division
euclidienne de qk par b, où qk est le quotient de la division euclidienne de n par bk .
De plus, les qk sont donnés récursivement par :

qk =
n −

∑k−1
i=0 ni bi

bk
=

qk−1 − nk−1

b
.

Remarque

On a donc deux approches pour déterminer l’écriture en base b :

soit en calculant les restes successifs, et en les retranchant, ce qui donne une approche
récursive ;

soit de manière plus directe, en calculant directement le chiffre qui nous intéresse.

La première méthode calcule les chiffres par indices croissants.
La seconde méthode est lourde en calculs en général : elle est plus efficace en déterminant
d’abord p, puis les chiffres par indices décroissants.

Proposition

Avec les mêmes notations : p = ⌊logb(n)⌋+ 1 =

⌊
ln(n)
ln(b)

⌋
+ 1.

Démonstration.

Par définition, on a : np−1 ̸= 0, et donc bp−1 ≤ n ≤
∑p−1

k=0 (b − 1)bk = bp − 1 < bp .
Par passage au logarithme en base b, qui est strictement croissant : p − 1 ≤ logb(n) < p.
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Représenter les entiers Numération suivant une base

Numération suivant une base

Exemple

On a les entiers suivants :

1011001(2) = 1 + 0 · 2 + 0 · 4 + 1 · 8 + 1 · 16 + 0 · 32 + 1 · 64 = 89

37(16) = 3 · 16 + 7 = 55

457(100) = 4 · 1002 + 5 · 100 + 7 = 40507

Remarque

On peut avoir une ambiguïté sur les chiffres utilisés. Par exemple, comme 45 ou 57 sont des
chiffres en base 100 (des éléments de J0; 99K, on pourrait avoir :

457(100) = 4 · 100 + 57 = 457 ou 457(100) = 45 · 100 + 7 = 4507.

Pour éviter ce problème, on travaille avec des listes de chiffres plutôt qu’avec des chaînes de
caractères. L’ordre est toujours le même : si n(b) = np−1np−2 . . . n0, alors la liste associée est
[np−1, np−2, . . . , n0].
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Représenter les entiers Numération suivant une base

Numération suivant une base

Exemple

Les deux algorithmes suivants convertissent directement une liste de chiffres (en base b) en le
nombre correspondant, en utilisant que : n =

∑p−1
k=0 nk bk .

1 def base2dec(L:list,b:int)->int:
2 s=0
3 p=len(L)
4 for i in range(p) :
5 s+=L[p-1-i]*(b**i)
6 return s

1 def base2dec(L:list,b:int)->int:
2 s=0
3 B=1
4 p=len(L)
5 for i in range(p) :
6 s+=L[p-1-i]*B
7 B=B*b
8 return s

L’algorithme ci-dessus est plus efficace et repose sur la méthode de Horner, qui sera expliquée
au prochain chapitre :

1 def base2dec(L:list,b:int)->int:
2 s=0
3 for l in L :
4 s*=b
5 s+=l
6 return s
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Représenter les entiers Numération suivant une base

Numération suivant une base

Exemple

Coder le nombre n = 37 en base 2 : on fait par divisions euclidiennes :

par indices croissants :

37 = 1 + 2 · 18
18 = 0 + 2 · 9

9 = 1 + 2 · 4
4 = 0 + 2 · 2
2 = 0 + 2 · 1
1 = 1 + 2 · 0

37 2
1 18 2

0 9 2
1 4 2

0 2 2
0 1 2

1 0

k nk qk
0 1 18
1 0 9
2 1 4
3 0 2
4 0 1
5 1 0

par indices décroissants : comme 37 ∈ [32; 64[= [25; 26[, alors p = 6 :

37 = 1 · 32 + 5 = 1 · 25 + 5
5 = 0 · 16 + 5 = 0 · 24 + 5
5 = 0 · 8 + 5 = 0 · 23 + 5
5 = 1 · 4 + 1 = 1 · 22 + 1
1 = 0 · 2 + 1 = 0 · 21 + 1
1 = 1 · 1 + 0 = 1 · 20 + 0

k nk
5 1
4 0
3 0
2 1
1 0
0 1
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Représenter les entiers Numération suivant une base

Numération suivant une base

Exemple

Coder le nombre 243 en base 2, 4, 8, 16 :

base 2 :
243 = 1 + 2 · 121
121 = 1 + 2 · 60

60 = 0 + 2 · 30
30 = 0 + 2 · 15
15 = 1 + 2 · 7
7 = 1 + 2 · 3
3 = 1 + 2 · 1
1 = 1 + 2 · 0

base 4 :
243 = 3 + 4 · 60

60 = 0 + 4 · 15
15 = 3 + 4 · 3

3 = 3 + 4 · 0

base 8 :

243 = 3 + 8 · 30
30 = 6 + 8 · 3
3 = 3 + 8 · 0

base 16 :

243 = 3 + 16 · 15
15 = 15︸︷︷︸

=F

+16 · 0

Donc : 243 = 11110011(2) = 3303(4) = 363(8) = F3(16)
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Représenter les entiers Numération suivant une base

Numération suivant une base
Exemple

Pour les chiffres par indices croissants, on a les codes suivants :

1 def dec2base(n:int,b:int)->list:
2 if n<b :
3 return [n]
4 N,L=n,[]
5 while N!=0 :
6 r,N=N%b,N//b
7 L=[r]+L
8 return L

1 def dec2base(n:int,b:int)->list:
2 if n<b :
3 return [n]
4 L=dec2base(n//b,b)
5 return L+[n%b]

Et pour les chiffres par indices décroissants :

1 def dec2base(n:int,b:int)->list:
2 B=b
3 L=[]
4 N=n
5 while n>=B :
6 B*=b
7 while B!=1 :
8 B=B//b
9 q=N//B

10 L.append(q)
11 N-=q*B
12 return L
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Représenter les entiers Manipulation des entiers dans une base donnée

Manipulation dans une base donnée

Méthode

Les opérations entre nombres se déduisent des opérations entre chiffres suivant les tables
(comme pour la base 10). Il suffit alors de poser les opérations.

Remarque

La multiplication (resp. la division) par b revient simplement à décaler les chiffres vers la gauche
(resp. la droite). Les autres divisions sont plus compliquées à poser.

Proposition

En base 2, on a les tables suivantes :

(+) 0 1
0 0 1
1 1 10

et
(×) 0 1
0 0 0
1 0 1
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Représenter les entiers Manipulation des entiers dans une base donnée

Manipulation dans une base donnée

Exemples

Effectuer les opérations suivantes :

1 11001(2) + 10011(2) :

1 1 0 0 1
+ 1 0 0 1 1
1 0 1 1 0 0

2 11001(2) × 11(2) :

1 1 0 0 1
× 1 1

0 1 1 0 0 1
1 1 0 0 1 .

1 0 0 1 0 1 1

3 227(8) + 176(8) :

2 2 7
+ 1 7 6

4 2 5

4 227(8) × 76(8) :

2 2 7
× 7 6
1 6 1 2

2 0 4 1 .
2 2 2 2 2

Remarque

Il suffit en fait de toujours raisonner avec des chiffres, et donc transformer tout élément qui n’est
pas dans J0; b − 1K pour s’y ramener : tous les calculs et tous les nombres doivent être alors écrits
en base b.
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe

Méthode

On fixe b > 1 une base et n ∈ N∗ un nombre de chiffres.

Pour a0, . . . , an−1 ∈ J0; b − 1K, on représente par le n-uplet (an−1, . . . , a0) l’entier
n−1∑
k=0

ak bk .

Proposition

Avec les notations précédentes, on peut représenter bn nombres : tous les entiers entre 0 et
bn − 1.

Définition

Si en additionnant ou en multipliant des entiers on dépasse bn − 1, on a un problème d’overflow
(ou dépassement) : les calculs se feront, mais seront erronés.
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe

Exemples

En base 2 sur 4 chiffres :
1 1 1 1

+ 0 0 0 1

�1 0 0 0 0

Plus généralement, on trouve toujours (bn − 1) + 1 = 0.

Remarque

En Python, les entiers sont représentés de base par une structure dynamique : ils sont
représentés sur des mots de taille fixe, mais cette taille est incrémentée dès qu’un dépassement
est détecté (ce qui n’est pas toujours le cas...).

Exemple

En binaire, on rencontre souvent les conventions suivantes, utilisées par Python :

int32 (n = 32) : entiers de 0 à 232 − 1 = 4 294 967 295 ;

int64 (n = 64) : entiers de 0 à 264 − 1 = 18 446 744 073 709 551 615.
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe

Méthode

On fixe b > 1 une base et n ∈ N∗ avec n ≥ 2 et on représente des entiers relatifs sur n chiffres.
Pour s ∈ {0, 1} et a0, . . . , an−2 ∈ J0; b − 1K, on représente par le n-uplet (s, an−2, . . . , a0) l’entier

(−1)s
n−2∑
k=0

ak bk .

On parle alors d’entiers signés.

Proposition

Avec les notations précédentes, on peut représenter 2 · bn−1 − 1 nombres : tous les entiers entre
−(bn−1 − 1) et bn−1 − 1.

Remarque

Cette convention présente les inconvénients suivants :

0 possède deux représentations (10 . . . 00 et 00 . . . 00) ;

problèmes d’overflow ;

signe d’un type différent

addition et soustraction à coder séparément, et des additions différentes pour les nombres
positifs et négatifs

addition de deux nombres a, b nécessite de comparer |a| et |b| ce qui est coûteux
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe

Exemple

Avec b = 2 et n = 4, on a :
(+3) = (0011) et (−3) = 1011

mais l’addition ne fonctionne pas bien :

0 0 1 1
+ 1 0 1 1

1 1 1 0

et on aurait (+3) + (−3) = (1110) = −6.
Pas super...
Et les soustractions ne sont pas mieux :

1 0 1 1
− 0 0 1 1

1 0 0 0

et on aurait (−3)− (+3) = (1000) = 0.
Pas tellement mieux...

Remarque

Les opérations (additions, soustractions, multiplications) fonctionnent bien avec les nombres
positifs, suivant les règles du calcul en base b, à condition de ne pas avoir d’overflow.
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe
Méthode (Complément à 2)

On fixe n ∈ N∗ un nombre de chiffres.
L’entier m ∈ J−2n−1; 2n−1 − 1K est représenté par :

1 si m ≥ 0 : sa représentation sur n chiffres (non signée), de la forme 0an−2an−3 . . . a1a0

2 si m < 0 : la représentation sur n chiffres (non signée) de 2n + m ∈ J2n−1; 2n − 1K, de la
forme 1an−2an−3 . . . a1a0

avec dans les deux cas an−2, an−3, . . . , a1, a0 ∈ {0, 1}.

Remarque

Cela revient à travailler dans J0; 2n − 1K en binaire modulo 2n.

Exemple

En complément à 2 avec n = 4, on a les représentations :

Positifs Négatifs
s code N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

s code N
1 0 0 0 -8
1 0 0 1 -7
1 0 1 0 -6
1 0 1 1 -5
1 1 0 0 -4
1 1 0 1 -3
1 1 1 0 -2
1 1 1 1 -1

Thomas MEGARBANE (PCSI) Représentation des nombres 19 / 36



Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe

Exemple

On a donc :
(+3) = (0011) et (−3) = 1101

et on a cette fois-ci :
0 0 1 1

+ 1 1 0 1

�1 0 0 0 0

et on a bien (+3) + (−3) = (0000) = 0.
Super !

Proposition

Pour coder l’opposé d’un nombre codé par complément à 2 (peu importe son signe), il suffit de
changer tous ses chiffres 0 ↔ 1 puis de lui ajouter 1.

Exemple

C’est ce qu’on avait avec 3 et −3 pour n = 4 :

(3) = (0011) 0↔1
=⇒ (1100) +1

=⇒ (1101) = (−3)

(−3) = (1101) 0↔1
=⇒ (0010) +1

=⇒ (0011) = (3)
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe

Démonstration.

Si on code sur n chiffres, alors on raisonne modulo 2n. Et on a pour tout entier a :

−a = 2n − a =
[
(2n − 1)− a

]
+ 1

2n − 1 est représenté par uniquement des 1 ;

(2n − 1)− a est donc obtenu en changeant tous les chiffres de a

le “+1” conclut la formule

Remarque

On ne va plus faire de soustractions : pour faire l’opération a − b, on transforme b en −b et on
calcule a + (−b).
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe

Exemple

Donner l’écriture décimale de A = (1 1010 1010 1101) :

par définition du complément à 2 : A < 0, et on va coder −A en base 2 :

(A) = (1 1010 1010 1101) 0↔1
=⇒ (0 0101 0101 0010) +1

=⇒ (0 0101 0101 0011) = (−A)

et par calcul en base 2 :

(−A) = 1 + 2 + 16 + 64 + 256 + 1024 = 1363

ou plus simplement en base 16 = 24 :

(−A) = 3 + 5 · 16 + 5 · 256 = 1363

donc A = −1363.

en raisonnant modulo 213 = 8192 :

A ≡ 1 + 4 + 8 + 32 + 128 + 512 + 2048 + 4096 = 6829

donc : A = 6829 − 8192 = −1363.
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Représenter les entiers Représentation des entiers sur mots de taille fixe

Représentation des entiers sur mots de taille fixe
Exemple

La transformation de a en −a suivant la représentation de complément à 2 peut se coder ainsi :

1 def plusun(L:list)->list:
2 n=len(L)
3 r=1
4 i=n-1
5 while r==1 and i>=0 :
6 if L[i]== 0 :
7 L[i]=1
8 r=0
9 else :

10 L[i]=0
11 i-=1
12 return L
13

14 def negint(L:list)->list:
15 for k in range(len(L)) :
16 L[k]=1-L[k]
17 return plusun(L)
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Les flottants Extension aux non-entiers

Extension aux non-entiers
Théorème

Étant donné x ∈ R+ et b ∈ N∗ avec b ≥ 2, alors x s’écrit de manière unique sous la forme :

x =

m−1∑
i=0

ai bi

︸ ︷︷ ︸
=⌊x⌋

+
+∞∑
j=1

a−j b−j

︸ ︷︷ ︸
=x−⌊x⌋

= am−1am−2 . . . a1a0, a−1a−2 . . .

où m ∈ N et les ak pour k ∈K −∞;m − 1K sont des éléments de J0; b − 1K.

Remarques

C’est ce qu’on a avec les réels en base 10 : tout réel s’écrit de manière unique sous forme
décimale (avec une partie décimale éventuellement infinie).

Les rationnels sont les seuls dont l’écriture est périodique à partir d’un rang (et ce peu
importe la valeur de b).

Un nombre admet une écriture finie si, et seulement si, il est de la forme
p
q

où q divise une

puissance de b (de manière équivalente : les nombres premiers qui apparaissent dans la
factorisation de q apparaissent tous dans celle de b). Par exemple, si b = 10, on retrouve :

D = {
p

10n
| n ∈ N} = {

p
2n5m

| n,m ∈ N}.

Thomas MEGARBANE (PCSI) Représentation des nombres 25 / 36



Les flottants Extension aux non-entiers

Extension aux non-entiers

Méthode

On représente des réels de manière approchée sous la forme :

x ≃ ±1

m−1∑
i=0

ai bi +
f∑

j=1

a−j b−j

 = ±am−1am−2 . . . a1a0, a−1a−2 . . . a−f

où m, f ∈ N sont fixés, ce qui revient à :

un caractère pour le signe

m caractères pour la partie entière

f caractères pour la partie fractionnaire

Proposition

Avec les notations précédentes, on représente :

2 · bm+f nombres

de ]− bm; bm[

avec précision de b−f près.
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Les flottants Extension aux non-entiers

Extension aux non-entiers

Exemple

Avec b = 2, m = 32 et f = 31, on représente sur 64 caractères 264 ≃ 1019 nombres à
2−31 ≃ 5 · 10−10 près.
Les nombres représentés sont de valeur absolue au plus 232 ≃ 4 · 109.

Remarque

On est toujours en erreur absolue, et les erreurs relatives deviennent considérables (pour les tout
petits nombres) ou inutilement petites (pour les très grands nombres).
Et les très grands nombres (> 232) et les très petits nombres (< 2−31) ne peuvent être
représentés.
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Les flottants Extension aux non-entiers

Extension aux non-entiers
Exemple

Codons le nombre a = 37.35 avec b = 2, m = 16 et f = 15.

signe : a > 0 donc s = 0

partie entière : ⌊a⌋ = 37 = 1 + 36 = 1 + 9 · 4 = 1 + 4 + 32 = (0000 0010 0101)2

partie fractionnaire : a − ⌊a⌋ = 0.35 :

de proche en proche :

2 · 0.35 = 0.7 = 0 + 0.7 ⇒ a−1 = 0
2 · 0.7 = 1.4 = 1 + 0.4 ⇒ a−2 = 1
2 · 0.4 = 0.8 = 0 + 0.8 ⇒ a−3 = 0
2 · 0.8 = 1.6 = 1 + 0.6 ⇒ a−4 = 1
2 · 0.6 = 1.2 = 1 + 0.2 ⇒ a−5 = 1
2 · 0.2 = 0.4 = 0 + 0.4 ⇒ a−6 = 0
2 · 0.4 = 0.8 = 0 + 0.8 ⇒ a−7 = 0
2 · 0.8 = 1.6 = 1 + 0.6 ⇒ a−8 = 1
2 · 0.6 = 1.2 = 1 + 0.2 ⇒ a−9 = 1
2 · 0.2 = 0.4 = 0 + 0.4 ⇒ a−10 = 0
2 · 0.4 = 0.8 = 0 + 0.8 ⇒ a−11 = 0
2 · 0.8 = 1.6 = 1 + 0.6 ⇒ a−12 = 1
2 · 0.6 = 1.2 = 1 + 0.2 ⇒ a−13 = 1
2 · 0.2 = 0.4 = 0 + 0.4 ⇒ a−14 = 0
...

...

par division euclidienne par 1 :

0.35 1
0.7
1.4 0.01011001100110011 . . .
0.8
1.6
1.2
0.4
0.8
1.6
1.2
0.4
0.8
1.6
1.2
0.4

...

Donc a = (+ 0000 0000 0010 0101, 0101 1001 1001 100)2
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Extension aux non-entiers

Remarque

Autre méthode : on peut multiplier par 2f = 215 = 32768 et prendre la partie entière, qu’on écrit en
base 2.
Dans l’exemple précédent :

a · 215 = 1223884.8

et on a :

1223884 = 0 + 2 · 611942
611942 = 0 + 2 · 305971
305971 = 1 + 2 · 152985
152985 = 1 + 2 · 76492

76492 = 0 + 2 · 38246
38246 = 0 + 2 · 19123
19123 = 1 + 2 · 9561
9561 = 1 + 2 · 4780
4780 = 0 + 2 · 2390
2390 = 0 + 2 · 1195
1195 = 1 + 2 · 597

597 = 1 + 2 · 298
298 = 0 + 2 · 149
149 = 1 + 2 · 74
74 = 0 + 2 · 37
37 = 1 + 2 · 18
18 = 0 + 2 · 9
9 = 1 + 2 · 4
4 = 0 + 2 · 2
2 = 0 + 2 · 1
1 = 1 + 2 · 0

ce qui donne (1223884) = (100101010110011001100)2, et on retrouve le résultat précédent en
replaçant la virgule en redivisant par 215.
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Les flottants, ou nombres à virgule flottante

Théorème-Définition

Étant donné b ∈ N avec b ≥ 2 et x ∈ R∗, alors il existe une unique écriture de la forme :

x = s × m × be

où :

s est le signe (±1)

m est la mantisse (un élément de [1; b[, ou parfois de [1/b; 1[ selon les conventions)

e est l’exposant (un élément de Z)

Une telle écriture s’appelle nombre flottant (ou nombre à virgule flottante).

Remarque

Pour b = 10 et une normalisation de la mantisse dans [1; 10[, on retrouve la notation
scientifique.

Thomas MEGARBANE (PCSI) Représentation des nombres 30 / 36



Les flottants Les flottants, ou nombres à virgule flottante

Les flottants, ou nombres à virgule flottante

Exemple

Pour b = 10, selon les normalisations, la mantisse s’écrit :

m = a0︸︷︷︸
̸=0

, a−1a−2 . . . ou 0, a−1︸︷︷︸
̸=0

a−2a−3 . . .

135435 = 1, 35435 × 105

7568, 78 = 7, 56878 × 103

0, 005487 = 5, 487 × 10−3

1, 05418 = 1, 05418 × 100

135435 = 0, 135435 × 106

7568, 78 = 0, 756878 × 104

0, 005487 = 0, 5487 × 10−2

1, 05418 = 0, 105418 × 101

Remarque

Les représentations des nombres se font toujours avec la même erreur relative (déterminée par
la mantisse) et les nombres représentés peuvent être aussi bien très petits que très grands (selon
l’exposant).
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Les flottants, ou nombres à virgule flottante

Exemple

Si b = 2, que l’on représente la mantisse sur M chiffres et l’exposant sur E chiffres, alors les
nombres représentés sont :

connus à un écart relatif de 2−M près

de l’ordre de 2e pour e ∈ [−2E−1; 2E−1].

Par exemple, si on représente m sur 23 chiffres (par écriture en base 2 des nombres à virgule) et
e sur 8 chiffres (par complément à 2), on connaît :

à 2−23 ≃ 10−7 près (donc 7 chiffres significatifs en base 10)

de l’ordre de 227 ≃ 3 · 1038 (plus grand) à 2−27 ≃ 3 · 10−39 (plus petit).

Remarque

Un des intérêts de travailler avec b = 2 est qu’il n’y a qu’un seul chiffre non nul en base 2 : 1 !
Et donc, selon la convention choisie, la mantisse est de la forme
m = 1, a−1a−2 . . . ou 0, 1a−2a−3 . . . . On gagne donc un chiffre.
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Les flottants, ou nombres à virgule flottante

Exemple

En norme IEEE-754, on travaille sur 32 ou 64 caractères, avec les choix :

Nombre de caractères Signe Exposant Mantisse
32 1 8 23
64 1 11 52

qui permettent d’avoir un bon compromis entre nombres représentés et erreur relative.

Exemple

Pour représenter un nombre en flottant, on cherche successivement et dans cet ordre le signe,
l’exposant et la mantisse. Avec les conventions précédentes, pour représenter a = 37, 35, on a :

s = 1

37, 35 ∈ [32; 64[= [25; 26[ donc e = 5 avec la convention m ∈ [1; 2[ (on aurait e = 6 pour la
convention m ∈ [1/2; 1[)

m =
37, 35

32
= 1.1671875 =

37, 35
25

On code s par 0
On code e par complément à 2 sur 8 chiffres : e = (00000101).
On code m sur 23 chiffres après la virgule : m = 1, 00101010110011001100110.
Et finalement : a = ( 0︸︷︷︸

s

00000101︸ ︷︷ ︸
e

00101010110011001100110︸ ︷︷ ︸
m

).
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Avantages et inconvénients des flottants

Remarque

Avantages :

comparaisons rapides de nombres

beaucoup de nombres représentés (très petits et très grands)

précision relative, donc toujours probante

calculs rapides à faire

Inconvénients :

“trous” dans la représentation

amplitude limitée des nombres représentés (underflow et overflow)

jamais de calculs exacts

erreurs de calculs

Définition (Seuil d’overflow/underflow)

Un seuil d’overflow est un nombre M tel que tout flottant a tel que |a| ≥ M sera traité comme ±∞.
Un seuil d’underflow est un nombre ε tel que tout flottant a tel que |a| ≤ ε sera traité comme 0.
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Avantages et inconvénients de flottants
Proposition

Dans les flottants :
1 l’égalité booléenne “==” n’a pas de sens
2 l’addition n’est pas associative
3 le théorème de Fermat est faux

Exemple
1 >>> 0.3 + 0.3 + 0.3 == 0.9
2 False
3

4 >>> (0.1 + 0.2) + 0.3 == 0.1 + (0.2 + 0.3)
5 False
6

7 >>> 1 + 2.**100 - 2.**100 == 1
8 False
9

10 >>> 1 + 2.**100 - 2.**100
11 0.0
12

13 >>> (2.**45)**4 + (2.**59 - 1)**4 == (2.**59+1)**4
14 True

Remarque

Pour l’égalité, on utilise le seuil d’underflow : on remplace le test a==b par abs(a-b)<e avec e le
seuil.
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Avantages et inconvénients de flottants

Remarque

Les Simpson avaient déjà donné des contre-exemples au théorème de Fermat :
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