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TD : suites récurrentes et suites implicites

Exercice 1 [Équivalent d'une suite implicite]

1. Soit n ∈ N∗. En tant que fonction polynomiale, la fonction fn est continue dérivable sur R+, de
dérivée dé�nie par :

∀x ∈ R+, f ′
n(x) = −1− nxn−1 ⩽ −1 < 0

donc est strictement décroissante sur R+. D'où le tableau de variation :

x

f ′
n

fn

0 +∞

−

11

−∞−∞

où on a utilisé que fn(0) = 1 (calcul direct) et lim
x→+∞

fn(x) = −∞ (polynôme de coe�cient dominant

négatif).

Par théorème de la bijection monotone, la fonction fn réalise une bijection strictement décroissante
de R+ sur ] −∞; 1] = fn(R+), ce qui assure existence et unicité de solution à l'équation fn(x) = 0
sur R+.

2. Par dé�nition de u1, on a : 1− u1 − u1
1 = 0, c'est-à-dire 1− 2u1 = 0, donc u1 =

1

2
.

De même, on a : 1−u2−u2
2 = 0, donc u2 =

−1±
√
5

2
. Comme u2 ∈ R+, on déduit que u2 =

−1 +
√
5

2
.

3. On a pour tout n ∈ N∗ :
fn(0) = 1 > 0 et fn(1) = −1 < 0

et donc par monotonie de fn, comme fn(un) = 0, on a : 0 < un < 1.

Remarque : en utilisant que
√
5 ≃ 2.2, on trouve bien que u2 ≃ 0.6 ∈]0, 1[.

4. Soit n ∈ N∗. Montrons que un+1 > un. Par décroissance de la fonction fn, il su�t de montrer que
fn(un+1) < fn(un) = 0.

Or, on a :

fn(un+1) = 1− un+1 − un
n+1

< 1− un+1 − un+1
n+1(en utilisant que un+1 ∈]0; 1[ et donc que un+1

n+1 < un
n+1)

< fn+1(un+1) = 0

ce qui donne bien que fn(un+1) < 0, et donc : un+1 > un.

Donc la suite (un) est bien croissante.

Remarque : elle est même strictement croissante du fait des inégalités strictes trouvées.

5. La suite (un) est donc croissante et majorée (par 1), donc par théorème de la limite monotone elle
converge vers un réel l ∈ [0; 1].

En utilisant le calcul de u2 et la stricte monotonie, on a même : l ∈

]
1 +

√
5

2
; 1

]
.



6. On suppose par l'absurde que l < 1 :

(a) Comme (un) est croissante, et minorée par 0, on a donc :

∀n ∈ N∗, 0 < un < l

et ainsi :
∀n ∈ N∗, 0 < un

n < ln.

Comme on a supposé que l < 1, alors l ∈ [0; 1[, et donc lim
n→+∞

ln = 0. Par encadrement, il vient

donc : lim
n→+∞

un
n = 0.

Remarque : on peut aussi procéder par calcul direct et composition. Comme l < 1, alors on
n'a plus de forme indéterminée :

∀n ∈ N, un
n = exp

 nln(un)︸ ︷︷ ︸
∼nln(l)→−∞

 → 0

(b) Soit n ∈ N∗. Par dé�nition de un, on a : fn(un) = 0, c'est-à-dire que : 0 = 1− un − un
n.

En passant à la limite, il vient : 0 = 1− l − 0, et donc l = 1.

D'où la contradiction avec le fait que l < 1.

On a ainsi l ⩾ 1, et donc l = 1.

Et donc : lim
n→+∞

un = 1.

7. On dé�nit la suite (vn) = (1− un).

(a) Comme (un) est croissante strictement et tend vers 1, alors la suite (vn) = (1−un) et décroissante
strictement tendant vers 0, et tous ses termes sont donc strictement positifs.

En particulier, la suite (ln(vn)) est bien dé�nie, et par composition de limite et croissance de la
fonction ln sur R∗

+, cette suite est décroissante tendant vers −∞.

Remarque : si on n'utilisait pas la stricte monotonie de la suite (un) (mais seulement sa
monotonie), on trouvait seulement que vn était une suite de réels positifs ou nuls. Restait à
montrer que l'on n'avait jamais vn = 0, c'est-à-dire un = 1, qui découle directement du fait que
fn(1) = −1 ̸= 0 et de l'injectivité de fn.

(b) Comme (vn) tend vers 0, alors par composition on a directement l'équivalent : ln(1− vn) ∼
n→+∞

−vn.

Mais par dé�nition de un et de vn, pour tout n ∈ N∗ on a :

ln(vn) = ln(1− un) = ln(un
n) = nln(un) = nln(1− vn)

et par équivalent d'un produit il vient :

ln(vn) ∼
n→+∞

−nvn.

(c) On déduit ainsi que : lim
n→+∞

−ln(vn)

nvn
= 1, et donc par continuité de ln en 1 que :

lim
n→+∞

ln

(
−ln(vn)

nvn

)
= 0.
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Comme on a de plus que lim
n→+∞

ln(vn) = −∞, il vient par limite d'un quotient que :

lim
n→+∞

ln

(
−ln(vn)

nvn

)
ln(vn)

= 0.

En développant le numérateur, on déduit que :

lim
n→+∞

(
ln(−ln(vn))− ln(n)− ln(vn)

ln(vn)

)
= 0.

Mais on a également :

� comme lim
x→+∞

ln(x)

x
= 0 (par croissances comparées) et lim

n→+∞
− ln(vn) = +∞, alors par

composition on a : lim
n→+∞

ln(−ln(vn))

ln(vn)
= 0 ;

� par calcul direct : lim
n→+∞

ln(vn)

ln(vn)
= 1.

En réinjectant ces deux limites, on a donc :

lim
n→+∞

ln(n)

ln(vn)
= −1

ce qui prouve bien que ln(vn) ∼
n→+∞

−ln(n).

(d) Par transitivité de la relation d'équivalence, on déduit des deux questions précédentes que :

−nvn ∼
n→+∞

−ln(n). Et par quotient d'équivalents on a donc : vn ∼
n→+∞

ln(n)

n
.
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Exercice 2 [Étude d'une suite récurrente]

1. Les variations de f se déduisent directement de celle de la fonction x 7→ x2 et on a le tableau de
variations suivant :

x

fn

−∞ 0 +∞

+∞+∞

−1−1

+∞+∞

2. Pour tout x ∈ R, on a :

f(x) = x ⇔ x2 − x− 1 = 0 ⇔ x =
1±

√
5

2

et donc α =
1 +

√
5

2
et β =

1−
√
5

2
.

Ce n'était pas demandé (mais c'est utile) : on a le tracé suivant pour la courbe de f ainsi que la
première bissectrice :

−2 −1 1 2 3

−1

1

2

3

4

Cf

y = x

β

α

3. Pour tout x ∈ R, on a :

g(x)− x = f ◦ f(x)− x =
(
x2 − 1

)2 − 1− x = x4 − 2x2 − x = x
(
x3 − 2x− 1

)
qui est un polynôme de degré 4, et s'annule donc au plus quatre fois sur R, c'est-à-dire que g possède
au plus quatre points �xes. Or, on a :

� α et β sont points �xes pour f , donc pour g également car :

g(α) = f(f(α)) = f(α) = α

(et pareil pour β) ;
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� 0 est racine évidente de g(x)− x, donc 0 est un point �xe de g ;

� les images par f de points �xes pour g sont des points �xes pour g (calcul immédiat) et ainsi
f(0) = −1 est aussi un point �xe de g.

Et �nalement, les quatre points �xes de g sont (dans l'ordre) : −1, β, 0 et α.

Notons que la résolution de l'équation g(x) = x nous donne le signe de g(x)− x sur R. On a en e�et
g(x) − x est un polynôme unitaire de degré 4 dont les racines sont données ci-dessus, et on a donc
la factorisation g(x)− x = (x+ 1)(x− β)x(x− α) ce qui donne le tableau de signe :

x

g(x)− x

−∞ −1 β 0 α +∞

+ 0 − 0 + 0 − 0 +

4. (a) Montrons le résultat par récurrence :

� par hypothèse, on a déjà : u0 ∈ [−1; 0] ;

� soit n ∈ N tel que un ∈ [−1; 0]. La fonction f est strictement décroissante sur [−1; 0], et
donc un+1 = f(un) ∈ [f(0); f(−1)] = [−1; 0], ce qui prouve l'hérédité.

D'où le résultat demandé par récurrence.

Remarque : on pouvait aussi constater que [−1; 0] est stable par f (du fait des variations de
f), ce qui revient au même.

(b) La fonction f est strictement décroissante sur [−1; 0] et la suite récurrence (un) est alors à
valeurs dans [0; 1] : un résultat du cours donne directement que (vn) et (wn) sont monotones
de variations opposées.

(c) Les suites (vn) et (wn) étant extraites de (un), elles sont également à valeurs dans [0; 1]. En
tant que suites monotones bornées, elles convergent vers un point �xe de g de [0; 1] (comme f ,
donc g, est continue). Et ainsi les limites possibles de (vn) et (wn) sont 0, β et −1.

On peut même en dire un peu plus à ce stade : du fait de la relation wn = f(vn), on a
f (lim vn) = lim wn, donc :

� ou bien (vn) et (wn) convergent toutes les deux vers β ;

� ou bien, parmi (vn) et (wn), l'une tend vers 0 et l'autre vers −1.

(d) On suppose que u0 ∈ [−1; β[. On a alors v0 = u0 ∈ [−1; β[ et :

v1 = u2 = g(u0) ⩽ u0 = v0

en utilisant le signe de g(x)− x sur [−1; β[ (donné en question 3).

On déduit ainsi que la suite (vn) est décroissante, à valeurs dans [−1;u0] ⊂ [−1; β[. Sa limite
est donc nécessairement −1 (seule limite possible dans [−1;u0]).

Et (wn) tend vers 0 par la remarque donnée en question précédente.

(e) On procède comme ci-dessus : v0 = u0 ∈]β; 0] et :

v1 = u2 = g(u0) ⩾ u0 = v0

par signe de g(x)− x sur ]β; 0] (donné en question 3 aussi).

Et la suite (vn) est donc croissante, à valeurs dans [u0; 0] ⊂]β; 0]. Sa limite est donc nécessairement
0 (seule limite possible dans [u0; 0]).

Et comme précédemment, on déduit que (wn) tend vers −1.
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(f) On déduit qu'on a les cas suivants :

� si u0 = β : comme β est point �xe de f , la suite (un) est constante de valeur β et converge
;

� si u0 < β : alors la suite diverge, et plus précisément sa suite extraite des termes de rangs
pairs tend vers −1 et celle de ses termes de rangs impairs tend vers 0 ;

� si u0 > β : alors la suite diverge, et plus précisément sa suite extraite des termes de rangs
pairs tend vers 0 et celle de ses termes de rangs impairs tend vers −1.

Cela donne bien que la suite (un) converge alors si, et seulement si, elle est constante (de valeur
β).

5. (a) On procède par récurrence :

� par hypothèse, on a déjà : u0 ⩾ α ;

� soit n ∈ N tel que un ⩾ α. La fonction f est strictement croissante sur [α; +∞[, et donc
un+1 = f(un) ⩾ f(α) = α, ce qui prouve l'hérédité.

D'où le résultat demandé par récurrence.

(b) La fonction f est croissante sur [α; +∞[, et la suite (un) est une suite récurrente associée à f à
valeurs dans [α; +∞[ : elle est donc monotone.

(c) La monotonie de (un) se détermine en regardant ses deux premiers termes.

Si u0 > α, alors u1 = f(u0) > u0 (étude du signe de f(x) − x, qui en tant que polynôme du
second degré de coe�cient dominant positif est strictement positif hors de ses racines, donc
pour x > α). Et donc (un) est alors croissante.

Elle a une limite (�nie ou non a priori).

Supposons par l'absurde qu'elle tend vers une limite �nie : on aurait alors, en notant ℓ sa limite,
que ℓ est un point �xe de f (f est continue sur R, et par propriété d'une limite d'une suite
récurrente). Mais on a aussi ℓ ∈ [u0; +∞[⊂]α; +∞[ (comme (un) est croissante). Mais le plus
grand point �xe de f étant α, on ne peut avoir de limite �nie.

Donc (un) a une limite in�nie : en tant que suite croissante elle tend vers +∞.

(d) On a donc deux cas :

� si u0 = α : la suite (un) est constante à α (et converge vers α) ;

� si u0 > α : la suite (un) est strictement croissante et tend vers +∞ (elle diverge).

En particulier, on retrouve que (un) converge si, et seulement si, elle est constante.

6. (a) Par l'absurde : si on avait pour tout n ∈ N que un ∈]0;α[ :
� la fonction f est croissante sur ]0;α[ donc (un) serait monotone ;

� plus précisément, comme f(x)− x est négatif sur ]0;α[, (un) serait décroissante ;

� en tant que suite décroissante minorée (par 0), la suite (un) converge ;

� sa limite est un point �xe de f dans [0;u0] ⊂ [0;α[.

D'où la contradiction, car un tel point �xe n'existe pas.

Et �nalement il existe n ∈ N tel que un ⩽ 0. Par étude des variations de f on a même
un ∈ [−1; 0].

(b) On se ramène au cas de la question 4) : on a vu en 4)d) que la suite (un) avec u0 ∈ [−1; 0]
converge si, et seulement si : u0 = β. La suite (vn) = (un+n0) aussi (elle véri�e la même
dé�nition). Et regarder (vn) revient à regarder (un) à partir du rang n0, ce qui donne bien le
résultat.
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(c) Soit x ∈ R+ et y ∈ [−1;+∞[. On a :

f(x) = y ⇔ x2 − 1 = y ⇔ x2 = y + 1car x ⩾ 0
⇔

x =
√

y + 1 ⇔ x = h(y)

ce qui prouve bien le résultat demandé.
Comme f est strictement croissante sur R+, par monotonie d'une réciproque, h est strictement
croissante sur [−1;+∞[.

(d) Notons déjà que, par construction, on a :

∀n ∈ N, an = hn(β)

(la puissance désignant ici la composition de fonctions). Et donc :

A = {hn(β) |n ∈ N}.

On sait déjà que la suite (un) converge si, et seulement si, il existe n0 ∈ N tel que un0 = β.
Mais par dé�nition de un, on a :

un0 = f(un0−1) = f 2(un0−2) = · · · = fn0(u0)

avec u0, u1, . . . , un0−1 ∈ R∗
+ par minimalité de n0.

En appliquant h à l'égalité précédente n0 fois, on déduit que :

u0 = hn0(un0).

Et �nalement (un) converge si, et seulement si il existe n0 ∈ N tel que u0 = hn0(β), c'est-à-dire
si, et seulement si : u0 ∈ A.

7. Notons déjà que, par parité de la fonction f , il su�t de raisonner sur u0 au signe près.

On déduit de ce constat et des questions précédentes :

� si u0 = α ou β : la suite (un) est constante, et converge vers α ou β ;

� si u0 ∈]−∞;−α[∪]α; +∞[ : la suite (un) est strictement croissante et tend vers +∞ ;

� si u0 ∈ A ou −u0 ∈ A : alors (un) est stationnaire à β, et converge vers β ;

� si u0 = −α : u1 = α et (un) est stationnaire à α, et converge vers α ;

� si ±u0 ∈] − α;α[\A : la suite (un) diverge (avec ses suites extraites de rangs pairs ou impairs
qui convergent pour l'une vers 0 et pour l'autre vers −1).

8. Supposons par l'absurde que (un) tende vers l sans être stationnaire : par continuité de f , on déduit
f(l) = l (et donc l = α ou β), et ainsi (un) ne prend jamais la valeur de l (car si elle la prenait à un
rang, elle la garderait, et (un) serait stationnaire, ce qui est interdit).

Mais alors le quotient :
un+1 − l

un − l
=

f(un)− f(l)

un − l
est bien dé�ni (un ne prend jamais la valeur de l

donc le dénominateur ne s'annule pas), et tend vers f ′(l) = 2l.

Par continuité de la valeur absolue, le quotient
|un+1 − l|
|un − l|

tend donc vers |2l| =
√
5± 1 (suivant que

l = α ou l = β). Dans les deux cas, on a |2l| > 1, ce qui impose que la suite (|un − l|) est croissante

à partir d'un certain rang (le quotient
|un+1 − l|
|un − l|

ne prend que des valeurs strictement plus grandes

que 1 à partir d'un certain rang).

Mais la suite (|un − l|) ne s'annule jamais, et est strictement croissante à partir d'un certain rang
(disons n0) : sa limite, qui devrait être 0, doit aussi être au moins égale à |un0 − l| > 0. Et donc
0 > 0 : d'où la contradiction.

Donc les seules suites qui convergent sont les suites stationnaires, comme on l'a montré avant.
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