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Feuille d'exercices no17 : Arithmétique dans les entiers

Exercice 1 [Quelques divisibilités]
Par récurrence. Initialisation immédiate et pour l'hérédité :

1. 32n+3 + 2n+3 = 9 · 32n+1 + 2 · 2n+2 = 7 · 32n+1 + 2 · (32n+1 + 2n+2) ;

2. 5n+1 − 1− 4(n+ 1) = 5 · 5n − 1− 4n− 4 = 5 · (5n − 1− 4n) + 16n ;

3. (n+1)(n+2+1)(7n−5+7) = n(n+2)(7n−5)+21n2+39n+6 = n(n+2)(7n−5)+3n · (7n+13)+6
où n(7n+ 13) est toujours pair (disjonction suivant la parité de n) ce qui donne bien un multiple de 6
à la �n.

Exercice 2 [Divisibilités . . . ou pas !]
On fait des combinaisons linéaires (à coe�cients entiers) pour montrer que l'on a des divisions avec

des nombres plus petits, donc on explicite tous les diviseurs.

1. si n divise n2 + 1, alors n divise 1 = (n2 − 1) − n · n donc n = ±1. Réciproque vraie. Donc divisions
ssi n = ±1.

2. si n+1 divise n2+1, alors n+1 divise 2n = (n+1)2− (n2+1) puis n+1 divise 2 = 2(n+1)−2n. Donc
n+ 1 = ±2 ou ±1. Donc n ∈ {−3,−2, 0, 1}. Réciproque vraie. Donc division ssi n ∈ {−3,−2, 0, 1}.

3. si n − 4 divise 3n − 17, alors n − 4 divise 5 = 3(n − 4) − (3n − 17) donc n − 4 ∈ {±1,±5} donc
n ∈ {−1, 3, 5, 9}. Réciproque vraie. Donc division ssi n ∈ {−1, 3, 5, 9}.

4. si n− 1 divise 2n2 − 2n+4, alors n− 1 divise 4 = 2n2 − 2n+4− 2n(n− 1) donc n− 1 ∈ {±1,±2,±4}.
Donc n ∈ {−3,−1, 0, 2, 3, 5}. Réciproque vraie. Donc division ssi n ∈ {−3,−1, 0, 2, 3, 5}.

Exercice 3 [Nombres non premiers consécutifs]
Un nombre entre n! et n! + n est de la forme n! + k pour k ∈ J2;nK. Mais k et n! sont divisibles par

k, donc n! + k aussi. Et n! + k > k > 1, donc n! + k admet un diviseur non trivial (compris strictement
entre 1 et lui-même) : il n'est pas premier.

Exercice 4 [Calculs de pgcd]
On passe par l'algorithme d'Euclide

1. 94 ∧ 267 = 1 ;

2. 106 ∧ 317 = 1 ;

3. 82 ∧ 519 = 1 ;

4. 9348 ∧ 1640 = 164 ;

5. 25 ∧ 38 = 1 ;

6. 19 ∧ 54 = 1 ;

7. 18 ∧ 29 = 1 ;

8. 51 ∧ 148 = 1 ;

9. 293 ∧ 107 = 1.



Exercice 5 [Couples d'entiers premiers entre eux]
On essaie de faire une division avec un reste petit (un peu comme une division euclidienne) pour

montrer que les diviseurs sont �petits� :

1. (n+ 1)! + 1 = (n+ 1) · (n! + 1)− n donc un diviseur commun divise n. Puis n! + 1 = n · ((n− 1)!) + 1
donc un diviseur commun divise 1 : n! et (n+ 1)! + 1 sont premiers entre eux.

2. 3n+1 + 2n+1 = 3 · (3n + 2n) − 2n donc un diviseur commun divise 2n (et est donc au signe près une
puissance de 2). Mais 3n+1 + 2n+1 est impair (impair + pair = impair), donc la seule puissance de 2
qui le divise est 1. Donc 3n+1 + 2n+1 et 3n + 2n sont premiers entre eux.

Exercice 6 [Famille d'entiers deux-à-deux premiers entre eux]
Soient i, j ∈ {1, . . . , n+ 1} distincts. Si d divise ai et aj, alors d divise jai − iaj = j − i. Donc d divise

n! (car j − i apparaît comme facteur dans n!), donc d divise 1 = ai − in!.
Donc ai et aj sont premiers entre eux.

Exercice 7 [Divisions dans les puissances]
On suppose que m divise n. On pose n = mk (pour k ∈ N). Alors :

an − bn = amk − bmk = (am)k − (bm)k = (am − bm)

(
k−1∑
i=0

(am)i (bm)k−1−i

)
︸ ︷︷ ︸

∈Z

et on a bien que am − bm divise an − bn.

Exercice 8 [Un critère de double divisibilité]
On prend les valeurs de x2 et y2 modulo 7. On a le tableau suivant :

x [7] 0 ±1 ±2 ±3
x2 [7] 0 1 4 = −3 2 = −5

Et ainsi :

� si 7|x et 7|y : alors 7|x2 et 7|y2 donc 7|x2 + y2 ;

� si 7|x2+ y2 : alors x2 et y2 sont opposés modulo 7. Mais le seul nombre qui possède son opposé dans
la seconde ligne du tableau est 0, qui est son propre opposé. Donc 7|x et 7|y.

Exercice 9 [Critères usuels de divisibilité]
On considère un entier n ∈ N, dont on note a0, . . . am les chi�res dans l'écriture décimale.

1. Pour N ∈ {2, 5, 10} on a : n ≡ a0 [N ] donc N |n ⇔ N |a0 c'est-à-dire :

� pour N = 2 : a0 ∈ {0, 2, 4, 6, 8} ;

� pour N = 5 : a0 ∈ {0, 5} ;

� pour N = 10 : a0 = 0.

2. Pour tout k ∈ N le reste de la division euclidienne de 10k par 3 et par 9 vaut 1. Pour N ∈ {3, 9} on
a donc : n ≡

∑m
i=0 ai. Donc n est divisible par N si, et seulement si, la somme des chi�res de n (en

base 10) est un multiple de N (valable pour N = 3 ou N = 9).

3. Le reste de la division euclidienne de 102k par 11, et celui de 103k par 37 valent 1. On retrouve les
critères de divisibilité par 11 et 37 :
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� un nombre est un multiple de 11 si, et seulement si, la somme de ses chi�res groupés par 2 à
partir des unités est un multiple de 11 ;

� un nombre est un multiple de 37 si, et seulement si, la somme de ses chi�res groupés par 3 à
partir des unités est un multiple de 37.

Et on a même mieux : dans les deux cas, la somme obtenu a même reste dans la division euclidienne
par 37 ou 11 (suivant les cas).

Exercice 10 [Amélioration du critère de divisibilité par 37]
La nullité du reste dans la division euclidienne par 37 est préservée. En multipliant par 3, on a ainsi

un multiple de 37 au départ si, et seulement si, on a un multiple de 3× 37 = 111 à l'arrivée : la condition
nécessaire et su�sante cherchée est donc a = b = c.

Exercice 11 [Un autre critère de divisibilité]

1. Par récurrence : 10n ≡ 1 [11] si n est pair et −1 si n est impair.

2. Un nombre est un multiple de 11 si, et seulement si, la somme alternée de ses chi�res (c'est-à-dire la
di�érence entre la somme de ses chi�res et rangs pairs et ceux de rangs impairs) est un multiple de 11.

Exercice 12 [Équations d'entiers]

1. 7x = 4y3 : pour (x, y) solution, y est un multiple de 7 et x est un multiple de 4. Si on écrit x = 4a et
y = 7b, on obtient a = 49b3. Et pour tout b ∈ Z, le couple (4 · 49b3, 7b) est solution.

2. xy = 3x + 2y : on a xy = 3x + 2y ⇔ (x − 2)(y − 3) = 6. En notant a = y − 3, on déduit que pour
(x, y) solution a ∈ {±1,±2,±3,±6}. Si on �xe un tel a, alors (x, y) (non nuls) forme une solution si,

et seulement si, x =
6

a
+ 2 et y = 3 + a. Ce qui donne comme solutions :

(8, 4), (−4, 2), (5, 5), (−1, 1), (4, 6), (0, 0), (3, 9), (1,−3)

correspondant (dans l'ordre) à a valant 1,−1, 2,−2, 3,−3, 6,−6.

3.
1

x
+

1

y
=

1

5
:
1

x
+

1

y
=

1

5
⇔ (x− 5)(y − 5) = 25. Même méthode en posant a = y − 5 ∈ {±1,±5,±25}

qui donne comme solutions :

(30, 6), (−20, 4), (10, 10), (6, 30), (4,−20)

(on a retiré a = 5 qui donne x = y = 0 qui est exclu de l'ensemble des solutions).

4. 17x + 11y = a (a ∈ Z) ; on utilise 17 × 2 − 11 × 3 = 1 donc (2a,−3a) est une solution. Et pour
(x, y) ∈ Z2 :

17x+ 11y = a ⇔ 17x+ 11y = 17× 2a+ 11× (−3a) ⇔ 17(2a− x) = 11(y + 3a)

et alors y − 3a est un multiple de 17 donc de la forme y + 3a = 17n (pour n ∈ Z) ce qui donne
2a− x = 11n (pour le même n). Et �nalement les solutions sont les couples de la forme :

(x, y) = (2a− 11n,−3a+ 17n), n ∈ Z.
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5.

{
x ∧ y = 3
x ∨ y = 135

: pour (x, y) solution, on écrit x = 3x′ et y = 3y′ avec x′, y′ premiers entre eux. On

veut alors x′y′ = 45 donc (x′, y′) ou (y′, x′) ∈ {(±1,±45), (±5,±9)} donc comme solutions :

(±3,±135), (±135,±3), (±15,±27), (±27,±15).

6.

{
x+ y = 100
x ∧ y = 10

: pour (x, y) solution, on écrit x = 10x′ et y = 10y′ avec x′, y′ premiers entre eux.

On veut alors x′ + y′ = 10 ce qui donne (x′, y′) ∈ {(1, 9), (3, 7), (7, 3), (9, 1)} et donc comme solutions :

(10, 90), (30, 70), (70, 30), (90, 10).

Exercice 13 [Nombre et de diviseurs]
Chaque diviseur de n est de la forme

∏r
i=1 p

bi
i avec 0 ⩽ bi ⩽ ai pour tout i. Ce qui laisse ai + 1 choix

pour la valeur de bi. Et donc :
∏r

i=1(ai + 1) diviseurs en tout.
Pour la somme, on a :

a1∑
b1=0

a2∑
b2=0

· · ·
ar∑

br=0

pb11 p
b2
2 . . . pbrr =

(
a1∑

b1=0

pb11

)(
a2∑

b2=0

pb22

)
. . .

(
ar∑

br=0

pbrr

)

=
pa1+1
1 − 1

p1 − 1

pa2+1
2 − 1

p2 − 1
. . .

par+1
r − 1

pr − 1
=

r∏
i=1

pai+1
i − 1

pi − 1

Exercice 14 [Produit des diviseurs]
Un tel entier n'est pas premier (sinon il n'a pas de diviseur non trivial).
Le plus petit nombre premier p qui divise n est un diviseur non trivial de n. Donc :

� si q = n/p = p : alors n = p2, mais son seul diviseur non trivial est p, ce qui est impossible ;

� sinon : alors q = n/p véri�e qp = n, donc n n'a pas d'autre diviseur non triviaux que p et q. Donc
ou bien q est premier (et c'est bon) ; ou bien il ne l'est pas, mais il ne peut avoir d'autre diviseur
premier que p (sinon ce serait aussi un diviseur non trivial de n), donc q = p2.

Et �nalement n = pq (pour p, q premiers distincts) ou n = p3 (pour p premier).

Exercice 15 [Sommes des diviseurs et nombres de Mersenne]

1. Par contraposée : si n n'est pas premier, on pose n = pq (p, q > 1) et alors 2n − 1 se factorise par
2p − 1 et 2q − 2 (factorisation de an − bn) donc n'est pas premier.

Réciproque fausse (sinon on pourrait facilement faire des nombres premiers aussi grands que l'on
veut). Exemple : M11 = 2047 = 23 · 89 n'est pas premier.

2. Mp est premier impair. Les diviseurs de N sont les 2k ou 2kMp pour 0 ⩽ k ⩽ p − 1. Leur somme
(somme géométrique) vaut : (2p − 1) · (Mp + 1) == Mp · 2p = 2N donc la somme de ses diviseurs
stricte vaut N (on retire N des diviseurs).

Exercice 16 [Entiers algébriques]

1. On écrit x =
a

b
avec a, b premiers entre eux. Si x n'est pas entier, b possède un diviseur premier qui

apparaît au dénominateur de xn =
an

bn
, mais pas au numérateur donc xn /∈ Z. Et si x ∈ Z, alors

directement xn ∈ Z.
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2. Il su�t de montrer que tout élément de Z \ Q n'est pas solution de (E). Soit x ∈ Z \ Q. On écrit

x =
a

b
avec a, b premiers entre eux et on pose p diviseur premier de b (existe comme b /∈ Z). Alors (en

multipliant par bn) :

x solution de (E) ⇒ an + an−1a
n−1b+ · · ·+ a1ab

n−1 + a0b
n = 0 ⇒ b|an ⇒ p|an ⇒ p|a

ce qui est absurde. Donc x n'est pas solution de (E).

On a le cas particulier où tous les ai sont nuls, sauf éventuellement a0.

Exercice 17 [Nombres de Fermat]

1. Par contraposée : si n n'est pas une puissance de 2, on écrit n = p2k pour p > 1 impair et par
factorisation de an + bn pour n impair il vient :

2n + 1 = (22
k

)p − (−1)p = (22
k

+ 1) ·

(
p−1∑
l=0

2l2
k

(−1)p−1−l

)

et on a ainsi 22
k
+ 1 qui est un diviseur strict de 2n + 1, qui n'est pas premier.

2. On procède par algorithme d'Euclide. On considère n,m ∈ N distincts. Quitte à les échanger, on peut
supposer m > n, et on pose donc m = n+ p avec p ∈ N∗. On a alors :

Fm = Fn+p = 22
n+p

+ 1 = 22
n2p + 1 =

(
22

n)2p
+ 1 =

(
22

n)2p − 12
p

+ 2

=
(
22

n − 1
)
·

(
2p−1∑
k=0

2k2
n

)
+ 2 = Fn ·

(
2p−1∑
k=0

2k2
n

)
+ 2

qui est la division euclidienne de Fm par Fn. Et ainsi le reste est 2. Le reste suivant dans l'algorithme
d'Euclide est 1 (comme Fn est impair). Et c'est le dernier reste non nul.

Donc Fm et Fn sont premiers entre eux.

Exercice 18 [Nombre de zéros] Le nombre de 0 est le nombre de fois qu'un nombre est divisible par
10 : c'est donc min(v2, v5).

On peut calculer ces deux nombres directement : entre 1 et 100 (tous les facteurs de 100!), il y a :

� 50 multiples de 2, parmi lesquels 25 multiples de 4, parmi lesquels 12 multiples de 8, parmi lesquels
6 multiples de 16, parmi lesquels 3 multiples de 32, parmi lesquels 1 de 64. Ce sont les seuls avec
une valuation 2-adique non nulle. Par valuation d'un produit, il vient :

v2(100!) = 50 + 25 + 12 + 6 + 3 + 1 = 97

� 20 multiples de 5, parmi lesquels 4 multiples de 25, et de même :

v5(100!) = 20 + 4 = 24

et �nalement il y a 24 zéros dans l'écriture de 100! (en base 10). Il y aurait 97 zéros en base 2, et seulement
2 en base 37.
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