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Feuille d'exercices no15 : Espaces vectoriels

Exercice 1 [Sous-espaces vectoriels de R2]

1. {(x, y) ∈ R2 |x ⩽ y} : pas un sev car (0, 1) appartient mais pas (0,−1) (stable par addition, mais pas
par multiplication par des réels négatifs)

2. {(x, y) ∈ R2 |x = y} : sev (propriétés véri�ées facilement)

3. {(x, y) ∈ R2 |xy = 0} : pas un sev car (0, 1) et (1, 0) appartiennent mais pas (1, 1) (pas stable par
addition)

4. {(x, y) ∈ R2 |x+ y = a} : pas un sev si a ̸= 0 (ni stable par addition ni par produit), mais sev si a = 0
(propriétés véri�ées facilement).

Exercice 2 [Sous-espaces vectoriels de RN]

1. les suites bornées : sev : la suite nulle est bornée, et stable par combinaisons linéaires par l'inégalité
triangulaire

2. les suites convergentes : sev : la suite nulle converge, et stable par combinaison linéaire par opération
sur les limites ;

3. les suites ayant une limite : pas un sev : pas stable par addition (prendre (un) = (−n + (−1)n) et
(vn) = (n) qui ont une limite mais pas leur somme) ;

4. les suites tendant vers a (pour a ∈ R �xé) : il faut a = 0 (sinon on n'a pas la suite nulle) et alors c'est
un sev (stabilité découle des opérations sur les limites) ;

5. les suites géométriques : pas un sev : si les raisons sont di�érentes, la somme (ou une combinaison
linéaire) n'est en général pas géométrique. Par exemple (un) = (1) est géométrique de raison 1, et
(vn) = ((−1)n) est géométrique de raison −1 mais leur somme n'est pas géométrique (comme elle
s'annule parfois, alors qu'une suite géométrique qui s'annule une fois est alors stationnaire à 0).

6. les suites arithmétiques : sev : la suite nulle est arithmétique de raison 0, et une combinaison linéaire
de suites arithmétique est arithmétique (la raison est la combinaison linéaire des raisons)

7. les suites arithmético-géométriques : pas un sev : une suite arithmético-géométrique est de la forme
géométrique+constante, et on peut faire des sommes de deux suites géométriques de raisons di�érentes
qui sort de ce cadre

8. les suites linéaires récurrentes d'ordre 2 : pas un seb : ce sont des sommes d'au plus deux suites
géométriques, et on peut sortir de ce cadre ;

9. les suites périodiques : sev : la suite nulle est géométrique (tout entier est une période) ; et une
combinaison linéaire de deux suites périodique est périodique (pour période on peut prendre le produit
des périodes)

10. les suites monotones : pas un sev : les suites (un) = (3n) et (vn) = (−3n + (−1)n) sont monotones
(même strictement) mais pas leur somme.

Exercice 3 [Sous-espaces vectoriels de F(R,R)]



1. les fonctions monotones : pas un sev car pas stable par somme : prendre x 7→ ex et x 7→ e−x.

2. les fonctions qui s'annulent : pas un sev car pas stable par somme : prendre x 7→ x2 (qui s'annule en
0) et x 7→ 2x+ 2 (qui s'annule en −1) alors que leur somme x 7→ x2 + 2x+ 2 ne s'annule pas

3. les fonctions qui s'annulent en a (pour a ∈ R �xé) : c'est un sev (et peu importe a) : la fonction nulle
s'annule en a, et la stabilité par combinaison linéaire est claire

4. les fonctions paires : sev

5. les fonctions impaires : sev

6. les fonctions périodiques : pas sev car pas stable par somme : on a vu que x 7→ cos(x) et x 7→ cos(
√
2x)

sont périodiques mais pas leur somme ;

7. les fonctions T -périodiques (pour T > 0 �xé) : sev

8. les fonctions f continues telles que
∫ b

a
f(t)dt = 0 (pour [a, b] ⊂ R �xé) : sev (découle de la linéarité de

l'intégrale)

9. les fonctions f dérivables telles que f ′(a) = 0 (pour a ∈ R �xé) : sev (découle de la linéarité de la
dérivation)

Exercice 4 [Et d'autres sous-espaces vectoriels]

1. les matrices triangulaires supérieures de Mn(K) : sev

2. les matrices inversibles de Mn(K) : pas un sev (pas la matrice nulle)

3. les matrices non-inversibles : pas un sev : pas stable par somme, car par exemple aucune matrice
élémentaire n'est inversible (si n ⩾ 2) alors que leurs sommes donnent toutes les matrices (et donc des
matrices inversibles)

4. les matrices scalaires : sev

5. les polynômes dont a est de multiplicité m (pour a ∈ C et m ∈ N �xés) : pas un sev (problème du
polynôme nul ou de X(X − a)m et a(X − a)m dont la di�érence possède a de multiplicité m+1 comme
racine)

6. les polynômes dont 0 est multiplicité au moins m (pour m ∈ N �xé) : sev

7. les polynômes de degré 4 : pas un sev (pas le polynôme nul)

8. les polynômes de degré au moins 4 : pas un sev (pas le polynôme nul)

9. les polynômes de degré au plus 4 : sev

Exercice 5 [Union d'espaces vectoriels]
C'est un sev si, et seulement si, l'un des espaces F ou G est inclus dans l'autre :

� si F ⊂ G : F ∪G = G est un sev ;

� si G ⊂ F : F ∪G = F est un sev ;

� sinon : soit x ∈ F \G et y ∈ G \ F : alors x, y ∈ F ∪G mais x+ y /∈ F ∪G car :
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� x+ y /∈ F : sinon on aurait y = (x+ y)− x ∈ F (di�érence de deux éléments de F sev), ce qui
est exclus ;

� x+ y /∈ G : sinon on aurait x = (x+ y)− y ∈ G (di�érence de deux éléments de G sev), ce qui
est exclus.

donc F ∪G n'est pas un sev (pas stable par somme)

Exercice 6 [Familles libres et bases dans R3]

1. ((1, 0, 1), (1, 2, 2)) : libre (deux vecteurs non proportionnels à cause d'un 0 présent dans l'un et pas
dans l'autre) donc c'est une base de l'espace engendré ;

2. ((1, 0, 0), (1, 1, 0), (1, 1, 1)) : libre (échelonnée, avec des 0 qui disparaissent d'un vecteur au suivant)
donc c'est une base de l'espace engendré ;

3. ((1, 2, 1), (2, 1,−1), (1,−1,−2)) on peut résoudre le système associé à l'équation xe1 + ye2 + ze3 = 0
par exemple, ou voir que e1 + e3 = e2 : la famille est donc liée, et comme on a une combinaison
linéaire nulle dont tous les coe�cients sont non nuls, on peut retirer n'importe quel vecteur et
préserver l'espace engendré ; il reste alors une famille à deux vecteurs non proportionnels, qui est
donc libre, et engendre le même espace : c'est donc une base ;

4. ((1,−1, 1), (2,−1, 3), (−1, 1,−1)) : les vecteurs e1 et e3 sont opposés, et c'est la seule relation qu'on
peut trouver entre les vecteurs. La famille est liée, et on peut retirer e1 ou e3 et préserver l'espace
engendré. Les vecteurs restant sont non proportionnels donc forment une famille libre. Et donc on
peut prendre (e1, e2) ou (e2, e3) comme base.

Exercice 7 [Familles libres et bases dans d'autres ev]

1.

((
1 1
0 −1

)
,

(
0 1
−1 0

)
,

(
0 0
1 0

))
: soient λ1, λ2, λ3 ∈ K. Alors :

λ1

(
1 1
0 −1

)
+ λ2

(
0 1
−1 0

)
+ λ3

(
0 0
1 0

)
=

(
0 0
0 0

)
⇔


λ1 = 0

λ1 + λ2 = 0
−λ2 + λ3 = 0

−λ1 = 0

⇔ λ1 = λ2 = λ3 = 0

donc la famille considérée est libre.

2. (x 7→ sin(x), x 7→ sin(2x), x 7→ sin(3x)) : posons f1, f2, f3 ces trois fonctions. Soient λ1, λ2, λ3 ∈ R
tels que λ1f1+λ2f2+λ3f3 = 0. Alors en évaluant en π/2, π/4 et 3π/4 (par exemple, mais on pourrait
faire en d'autres points) on déduit :

λ1 − λ3 = 0√
2
2
λ1 + λ2 +

√
2
2
λ3 = 0√

2
2
λ1 − λ2 +

√
2
2
λ3 = 0

qui donne λ1 = λ2 = λ3 = 0 donc la famille est libre.

Exercice 8 [Bases d'espaces vectoriels]
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1. {(x, y, z, t) ∈ R4 |x+ y + z + t = x+ 2y + 3z + 4t = 0} : on résout le système :{
x+ y + z + t = 0

x+ 2y + 3z + 4t = 0
⇔
{

x+ y + z + t = 0
y + 2z + 3t = 0

⇔
{

x = z + 2t
y = −2z − 3t

ce qui donne comme ensemble :

{(z + 2t,−2z − 3t, z, t) | z, t ∈ R} = {z(1,−2, 1, 0) + t(2,−3, 0, 1) | z, t ∈ R} = Vect ((1,−2, 1, 0), (2,−3, 0, 1)) .

Et on a bien une base parce que les deux vecteurs sont non proportionnels (des 0 pas au même endroit),
donc forment une famille libre, qui est donc une base de l'espace vectoriel considéré.

2. {y ∈ C2(R,R) | y′′ = 4y′ − 3y} : on résout l'équation di�érentielle y′′ − 4y′ + 3y = 0 : les solutions sont
les fonctions de la forme :

x 7→ λex + µe3x, λ, µ ∈ R

donc l'ensemble est :

{x 7→ λex + µe3x |λ, µ ∈ R} = Vect(x 7→ ex, x 7→ e3x)

et la famille génératrice utilisée est bien libre (non proportionnelles comme l'une est négligeable devant
l'autre par exemple) donc c'est une base.

3. {(un) ∈ Rn | ∀n ∈ N, un+2 = 4un+1 − 3un} : on a des suites linéaires récurrentes d'ordre 2, qui sont
exactement les suites de la forme :

un = λ+ µ3n, λ, µ ∈ R

donc l'ensemble est :
Vect((1), (3n))

et la famille génératrice utilisée est bien libre (même argument) donc c'est une base.

4. An(R) et Sn(R) :

� pour An(R) : une matrice antisymétrique est entièrement déterminée par ses coe�cients au-dessus
(strictement) de la diagonale, et on a ainsi :

An(R) = Vect ((Ei,j − Ej,i)1⩽i<j⩽n)

qui est libre en regardant coe�cient par coe�cient la matrice
∑

i<j ai,j(Ei,j − Ej,i) (elle est bien
nulle si, et seulement si, tous les ai,j sont nuls).

� pour Sn(R) : une matrice symétrique est entièrement déterminée par ses coe�cients au-dessus (au
sens large) de la diagonale, et on a ainsi :

Sn(R) = Vect ((Ei,j + Ej,i)1⩽i⩽j⩽n)

qui est libre par les mêmes arguments que ci-dessus.

5. {A = (ai,j) ∈ M2(R) | a1,1 + a2,2 = 0} : on a directement comme ensemble :{(
a b
c −a

)
| a, b, c ∈ R

}
= Vect

((
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

))
.

qui est une base (en regardant coe�cient par coe�cient une combinaison linéaire, comme pour An(R)
et Sn(R).
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Exercice 9 [Famille de fonctions trigonométriques]
Soient λ1, λ2, µ1, µ2 ∈ R tels que λ1cos + λ2idcos + µ1sin + µ2idsin = 0. On évalue en 0 : ce qui donne

λ1 = 0 En réinjectant et en évaluant en π on déduit λ2 = 0. En dérivant et en évaluant en 0 on trouve
µ1 = 0. En évaluant en π/2 on trouve µ2 = 0. Donc λ1 = λ2 = µ1 = µ2 = 0 : la famille est libre.

Soient λ1, λ2, λ3 ∈ R. Posons f1, f2, f3 respectivement x 7→ cos(x+a), x 7→ cos(x+b) et x 7→ cos(x+c).
Alors :

λ1f1 + λ2f2 + λ3f3 = 0 ⇔ ∀x ∈ R, λ1cos(x+ a) + λ2cos(x+ b) + λ3cos(x+ c) = 0

⇔ ∀x ∈ R, (λ1cos(a) + λ2cos(b) + λ3cos(c)) cos(x)− (λ1sin(a) + λ2sin(b) + λ3sin(c)) sin(x) = 0

⇔
{

λ1cos(a) + λ2cos(b) + λ3cos(c) = 0
λ1sin(a) + λ2sin(b) + λ3sin(c) = 0

(en utilisant que la famille (cos, sin) est libre, ce qu'on peut montrer directement en évaluant une combinaison
linéaire nulle en 0 et π/2, ou voir qu'elles sont non proportionnelles, ou encore la voir comme une sous-
famille de la première famille libre de cet exercice).

Mais le système

{
λ1cos(a) + λ2cos(b) + λ3cos(c) = 0
λ1sin(a) + λ2sin(b) + λ3sin(c) = 0

est un système linéaire homogène à 3 inconnues,

et 2 équations : il admet une in�nité de solution, et en particulier une solution non nulle. Donc on peut
trouver λ1, λ2, λ3 non tous nuls tels que λ1f1 + λ2f2 + λ3f3 = 0 : la famille (f1, f2, f3) est donc liée (et ce
peu importe le choix de a, b, c).

Soient λ, µ, ν ∈ R tels que λsin + µcos + ν(x 7→ sin(2x)) = 0. En évaluant en 0 on trouve µ = 0. En
évaluant en π/2 on déduit λ = 0. Puis en évaluant en π/4 on trouve ν = 0. Donc λ = µ = ν = 0 : la
famille est libre.

Exercice 10 [Altération d'une famille libre 1]
Soient λ, µ, ν tels que λ(y + z) + µ(z + x) + ν(x+ y) = 0.
Alors : (λ+ µ)z + (λ+ ν)y + (µ+ ν)x = 0.
Par liberté de (x, y, z) : λ+ µ = λ+ ν = µ+ ν = 0. Et en résolvant le système qui apparaît on trouve

λ = µ = ν = 0.
Donc la famille (y + x, z + x, x+ y) est libre.

Exercice 11 [Altération d'une famille libre 2]
Montrons qu'elle est libre si, et seulement si,

∑n
i=1 αi ̸= −1 :

� si
∑n

i=1 αi ̸= −1 : pour simpli�er posons α ̸= −1 cette somme .

Soient λ1, . . . , λn ∈ R tels que
∑n

i=1 λi(xi + y) = 0. Par dé�nition de y, on a donc :

n∑
i=1

λi

(
xi +

n∑
j=1

αjxj

)
=

(
n∑

i=1

λixi

)
+

(
n∑

j=1

(
n∑

i=1

λiαj

)
xj

)
=

n∑
i=1

(
λi + αi

n∑
j=1

λj

)
xi = 0

et par liberté de la famille des (xi), en posant λ =
∑n

j=1 λj :

∀i ∈ J1;nK, λi + λαi = 0

En sommant toutes ces égalités, on déduit :

λ+ αλ = 0

donc λ = 0 (comme α ̸= −1) puis :

∀i ∈ J1;nK, λi = −λαi = 0

donc la famille est libre.
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� si
∑n

i=1 αi = −1 : on veut montrer qu'on peut trouver des λi non tous nuls, de somme λ, tels que :

∀i ∈ J1;nK, λi + λαi = 0

et λi = −αi pour tout i convient. Qui sont bien non tous nuls car leur somme vaut −α = 1 ̸= 0.

Exercice 12 [Familles libres sur les fonctions]
On pourrait procéder par récurrence sur n. On va le faire de manière directe :

� pour les fi : on travaille avec les ordres de grandeur. Quitte à renuméroter les µi, on suppose que
µ1 < µ2 < · · · < µn. Et alors chaque fi est un o(fj) pour j > i.

Soient λ1, . . . , λn ∈ R tels que
∑

λifi = 0. Alors :

λnfn = −
n−1∑
i=1

λifi = o(fn)

donc λn = o(1) : donc λn = 0.

On répète ainsi de suite pour montrer que tous les λi sont nuls. On verra d'autres rédactions plus
convaincantes plus tard (par l'absurde, ou par récurrence Amora).

� pour les gi : on peut invoquer un argument de dérivabilité : considérons λ1, . . . , λn tels que
∑

λigi =
0. Fixons i ∈ J1;nK et montrons que λi = 0.

On a : λigi = −
∑

j ̸=i λjgj. La fonction gi n'est pas dérivable en µi, à l'inverse des gj pour j ̸= i
(comme les µi sont deux-à-deux distincts). Donc, par combinaison linéaire, λigi est dérivable en µi,
ce qui impose que λi = 0 comme gi n'est pas dérivable en µi.

Donc tous les λi sont nuls : la famille est libre.

Exercice 13 [Base sur les suites périodiques]
On �xe p ∈ N∗ :

1. On peut prendre la famille u0, u1, . . . , up−1 dé�nie par :

∀k ∈ J0; p− 1K, ∀n ∈ N, uk(n) =

{
1 si n ≡ k [p]
0 sinon

.

2. Notons déjà que, si une suite géométrique est p-périodique, sa raison est une racine p-ème de l'unité.
Par linéarité, il su�rait de considérer les suites géométriques de premier terme 1, c'est-à-dire qu'on
peut considérer les suites u0, u1, . . . , up−1 dé�nies par :

∀k ∈ J0; p− 1K, ∀n ∈ N, uk(n) = e2ikπ/p
n
= ωkn.

où ω = e2iπ/p.

Le côté libre et générateur se montre simultanément, en montrant l'inversibilité de la matrice A =
(ωij)0⩽i,j⩽p−1.

Pour son inversibilité, montrons que AX = 0 ⇔ X = 0. Soit X = (xi). Si AX = 0, alors pour tout
i ∈ J0; p− 1K on a :

p−1∑
j=0

xj(ω
i)
j
= 0

donc les ωi sont p racines distinctes du polynôme P =
∑p−1

j=0 xjX
j, qui est de degré au plus p − 1 : il

est donc nul. Donc tous les xj sont nuls. Ce qui prouve l'inversibilité de A.
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Exercice 14 [Somme et intersection d'espaces vectoriels]
On procède par double implication :

� si F = G : alors F +G = {x+ y |x ∈ F, y ∈ G} = {x+ y |x, y ∈ F} = F = G = F ∩G ;

� si F ∩G = F +G :

� F = {x+ y |x ∈ F, y = 0} ⊂ {x+ y |x ∈ F, y ∈ G} = F +G = F ∩G ⊂ G donc F ⊂ G ;

� démonstration analogue pour avoir G ⊂ F

et donc F = G par double inclusion.

Soient F,G deux sev de E. Montrer que : F ∩G = F +G ⇔ F = G.

Exercice 15 [Espaces de fonctions supplémentaires]
Considérons f ∈ C(R,R). Montrons séparément que f s'écrit de manière unique comme f1 + g1 et

f2 + g2 pour f1 ∈ F1, f2 ∈ F2 et g1, g2 ∈ G

� pour la première écriture : procédons par analyse�synthèse :

� analyse : posons f = f1 + g1 pour f1 ∈ F1 et g1 ∈ G. Notons g1 = λid (par dé�nition de G).
En évaluant en 0 et en 1 on trouve :

f(0) = f1(0) et f(1) = f1(1) + λ

et comme f1 ∈ F1 on déduit f1(1) = f1(0) donc nécessairement λ = f(1)− f(0) et ainsi :

g1 = (f(1)− f(0))id et f1 = f − (f(1)− f(0))id.

� synthèse : il est clair que de telles fonctions conviennent.

Et ainsi f s'écrit de manière unique comme somme d'un élément de F1 et d'un élément de G, ce qui
prouve bien que F1 et G sont supplémentaires.

� pour la seconde : on procède de même. On trouve que l'unique écriture est :

f =

(
f − 2

(∫ 1

0

f(t)dt

)
id

)
︸ ︷︷ ︸

∈F2

+

(
2

(∫ 1

0

f(t)dt

)
id

)
︸ ︷︷ ︸

∈G

.

Exercice 16 [Espaces de polynômes supplémentaires]
Soit P ∈ E. Notons P = a+ bX + cX2 + dX3. Alors :

P ∈ G ⇔ a+ b+ c+ d = b+2c+3d = 0 ⇔
{

b = −2c− 3d
a = c+ 2d

⇔ P = c(1− 2X +X2)+ d(2− 3X +X3)

donc G = Vect(1− 2X +X2, 2− 3X +X3) (qui est une base : deux vecteurs non proportionnels).
Et on aurait F = Vect(1, X), avec encore une base (la base canonique).
On considère E = R3[X], F = R1[X] et G = {P ∈ E |P (1) = P ′(1) = 0}. Montrer que F et G sont

supplémentaires dans E, et donner la décomposition correspondante pour 1, X,X2, X3.
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