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Feuille d’exercices n’15 : Espaces vectoriels

Exercice 1 [Sous-espaces vectoriels de R?]

1.

{(x,y) € R*|x < y} : pas un sev car (0,1) appartient mais pas (0,—1) (stable par addition, mais pas
par multiplication par des réels négatifs)

- A{(z,y) € R*|x =y} : sev (propriétés vérifices facilement)

{(x,y) € R?*|zy = 0} : pas un sev car (0,1) et (1,0) appartiennent mais pas (1,1) (pas stable par
addition)

{(z,y) € R*|z+y =a}: pas un sev si a # 0 (ni stable par addition ni par produit), mais sev si a = 0
(propriétés vérifiées facilement).

Exercice 2 [Sous-espaces vectoriels de R"]

1.

10.

les suites bornées : sev : la suite nulle est bornée, et stable par combinaisons linéaires par I'inégalité
triangulaire

les suites convergentes : sev : la suite nulle converge, et stable par combinaison linéaire par opération
sur les limites ;

les suites ayant une limite : pas un sev : pas stable par addition (prendre (u,) = (—n + (=1)") et
(v,) = (n) qui ont une limite mais pas leur somme) ;

les suites tendant vers a (pour a € R fixé) : il faut a = 0 (sinon on n’a pas la suite nulle) et alors c’est
un sev (stabilité découle des opérations sur les limites) ;

les suites géométriques : pas un sev : si les raisons sont différentes, la somme (ou une combinaison
linéaire) n’est en général pas géométrique. Par exemple (u,) = (1) est géométrique de raison 1, et
(vn) = ((—=1)™) est géométrique de raison —1 mais leur somme n’est pas géométrique (comme elle
s’annule parfois, alors qu’'une suite géométrique qui s’annule une fois est alors stationnaire a 0).

les suites arithmétiques : sev : la suite nulle est arithmétique de raison 0, et une combinaison linéaire
de suites arithmétique est arithmétique (la raison est la combinaison linéaire des raisons)

les suites arithmético-géométriques : pas un sev : une suite arithmético-géométrique est de la forme
géométrique-+constante, et on peut faire des sommes de deux suites géométriques de raisons différentes
qui sort de ce cadre

les suites linéaires récurrentes d’ordre 2 : pas un seb : ce sont des sommes d’au plus deux suites
géométriques, et on peut sortir de ce cadre ;

les suites périodiques : sev : la suite nulle est géométrique (tout entier est une période) ; et une
combinaison linéaire de deux suites périodique est périodique (pour période on peut prendre le produit
des périodes)

les suites monotones : pas un sev : les suites (u,) = (3n) et (v,) = (—=3n + (—1)") sont monotones
(méme strictement) mais pas leur somme.

Exercice 3 [Sous-espaces vectoriels de F(R,R)]



1. les fonctions monotones : pas un sev car pas stable par somme : prendre z +— e” et x — e ".

2. les fonctions qui s’annulent : pas un sev car pas stable par somme : prendre x — x? (qui s’annule en
0) et x — 2z + 2 (qui s’annule en —1) alors que leur somme = — z? + 2z + 2 ne s’annule pas

3. les fonctions qui s’annulent en a (pour a € R fixé) : c’est un sev (et peu importe a) : la fonction nulle
s’annule en a, et la stabilité par combinaison linéaire est claire

4. les fonctions paires : sev
5. les fonctions impaires : sev

6. les fonctions périodiques : pas sev car pas stable par somme : on a vu que z — cos(x) et z — cos(v/2z)
sont périodiques mais pas leur somme ;

7. les fonctions T-périodiques (pour T' > 0 fixé) : sev

8. les fonctions f continues telles que fabf(t)dt =0 (pour [a,b] C R fixé) : sev (découle de la linéarité de
l'intégrale)

9. les fonctions f dérivables telles que f'(a) = 0 (pour a € R fixé) : sev (découle de la linéarité de la
dérivation)

Exercice 4 [Et d’autres sous-espaces vectoriels]

1. les matrices triangulaires supérieures de M, (K) : sev
2. les matrices inversibles de M,,(K) : pas un sev (pas la matrice nulle)

3. les matrices non-inversibles : pas un sev : pas stable par somme, car par exemple aucune matrice
élémentaire n’est inversible (si n > 2) alors que leurs sommes donnent toutes les matrices (et donc des
matrices inversibles)

4. les matrices scalaires : sev

5. les polynomes dont a est de multiplicité m (pour a € C et m € N fixés) : pas un sev (probléme du
polynome nul ou de X (X —a)™ et a(X —a)™ dont la différence posséde a de multiplicité m + 1 comme
racine)

6. les polynomes dont 0 est multiplicité au moins m (pour m € N fixé) : sev
7. les polynomes de degré 4 : pas un sev (pas le polynoéme nul)
8. les polynomes de degré au moins 4 : pas un sev (pas le polynome nul)

9. les polyndomes de degré au plus 4 : sev

Exercice 5 [Union d’espaces vectoriels|
C’est un sev si, et seulement si, 'un des espaces F' ou G est inclus dans 'autre :

esiFCG: FUG =G est un sev ;
e siGCF: FUG=F est un sev ;

e sinon : soitz € F\Getye G\ F:alorsz,y€ FUG maisx+y ¢ FUG car :



— x+y ¢ F : sinon on aurait y = (v +y) —z € F (différence de deux éléments de F' sev), ce qui
est exclus ;

— x+y ¢ G : sinon on aurait = (x +y) —y € G (différence de deux éléments de G sev), ce qui
est exclus.

donc F'U G n’est pas un sev (pas stable par somme)

Exercice 6 [Familles libres et bases dans R?]

1. ((1,0,1),(1,2,2)) : libre (deux vecteurs non proportionnels & cause d’'un 0 présent dans l'un et pas

dans P'autre) donc ¢’est une base de 'espace engendré ;

. ((1,0,0),(1,1,0),(1,1,1)) : libre (échelonnée, avec des 0 qui disparaissent d’un vecteur au suivant)
donc c’est une base de l'espace engendré ;

. ((1,2,1),(2,1,-1),(1,—1,—-2)) on peut résoudre le systéme associé a 1'équation ze; + yes + ze3 = 0
par exemple, ou voir que e; + e3 = ey : la famille est donc liée, et comme on a une combinaison
linéaire nulle dont tous les coefficients sont non nuls, on peut retirer n’importe quel vecteur et
préserver 'espace engendré ; il reste alors une famille & deux vecteurs non proportionnels, qui est
donc libre, et engendre le méme espace : c’est donc une base ;

C((1,-1,1),(2,-1,3),(=1,1,—1)) : les vecteurs e; et e3 sont opposés, et c’est la seule relation qu’on
peut trouver entre les vecteurs. La famille est liée, et on peut retirer e; ou es et préserver ’espace
engendré. Les vecteurs restant sont non proportionnels donc forment une famille libre. Et donc on
peut prendre (e, es) ou (e, e3) comme base.

Exercice 7 [Familles libres et bases dans d’autres ev]
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donc la famille considérée est libre.

2. (z = sin(z),z — sin(2x), x +— sin(3z)) : posons fi, fa, f3 ces trois fonctions. Soient A, A2, A3 € R

tels que A1 fi+ Ao fo+A3f3 = 0. Alors en évaluant en 7/2, w/4 et 37/4 (par exemple, mais on pourrait
faire en d’autres points) on déduit :
)\1 - )\3 - 0
Ph+d+LN =0
\/75)\1—)\2—’—\/75/\3 - 0

qui donne \; = Ay = A3 = 0 donc la famille est libre.

Exercice 8 [Bases d’espaces vectoriels]



1. {(z,y,2,t) ER* |z +y+2+t=x+2y+ 32+ 4t =0} : on résout le systéme :

r+y+z+t = 0 o r+y+z+t = 0 el T = z+ 2t
r+2y+3z2+4 = 0 y+22+3t = 0 y = —2z—-3t

ce qui donne comme ensemble :
{(z+2t,-22 —3t,z,t) | 2,t € R} = {2(1,-2,1,0) + t(2,-3,0,1) | z,t € R} = Vect ((1,—-2,1,0),(2,—3,0,1))

Et on a bien une base parce que les deux vecteurs sont non proportionnels (des 0 pas au méme endroit),
donc forment une famille libre, qui est donc une base de 'espace vectoriel considéré.

2. {y € C}(R,R) |y” = 4y’ — 3y} : on résout I’équation différentielle ¢ — 43’ + 3y = 0 : les solutions sont
les fonctions de la forme :
T A 4+ pe, A peR

donc 'ensemble est :
{2 = Xe” + pe®™ |\, u € R} = Vect(x > €, x — &)

et la famille génératrice utilisée est bien libre (non proportionnelles comme 1'une est négligeable devant
l'autre par exemple) donc c’est une base.

3. {(un) € R"|Vn € Nyupio = dupi1 — 3u,} @ on a des suites linéaires récurrentes d’ordre 2, qui sont
exactement les suites de la forme :
un:)‘+M3nv A?MGR

donc 'ensemble est :
Vect((1), (3"))

et la famille génératrice utilisée est bien libre (méme argument) donc c¢’est une base.
4. A,(R) et S,(R) -

e pour A,(R) : une matrice antisymétrique est entiérement déterminée par ses coefficients au-dessus
(strictement) de la diagonale, et on a ainsi :

An(R) = Vect ((Eij — Eji)i<i<j<n)

a;;(E;; — Ej;) (elle est bien

qui est libre en regardant coefficient par coefficient la matrice ) P

nulle si, et seulement si, tous les a; ; sont nuls).

i<j
e pour S,(R) : une matrice symétrique est entiérement déterminée par ses coefficients au-dessus (au
sens large) de la diagonale, et on a ainsi :
Sn(R) = Vect ((Ei; + Eji)i<icjcn)
qui est libre par les mémes arguments que ci-dessus.

5. {A=(a;;) € Ma(R)|ay1 + azs =0} : on a directement comme ensemble :

e S tmmeerp = (( ) 60) (0)

qui est une base (en regardant coefficient par coefficient une combinaison linéaire, comme pour A, (R)
et S,(R).



Exercice 9 [Famille de fonctions trigonométriques]
Soient A1, Ao, 1, p2 € R tels que Ajcos + Agidcos + pysin + poidsin = 0. On évalue en 0 : ce qui donne
A1 = 0 En réinjectant et en évaluant en m on déduit Ay = 0. En dérivant et en évaluant en 0 on trouve
p1 = 0. En évaluant en 7/2 on trouve ps = 0. Donc A\; = Ay = p3 = e = 0 : la famille est libre.
Soient Aj, A2, A3 € R. Posons fi, fa, f3 respectivement x — cos(x+a), x — cos(x+b) et  +— cos(z+c).
Alors :
Mfi+Xfo+ Asfs =0 Ve € R, Acos(x + a) + Agcos(x + b) + Azcos(z +¢) =0

< Vo € R, (Acos(a) + Aacos(b) + Azcos(c)) cos(x) — (Asin(a) + Agsin(b) + Azsin(c)) sin(z) = 0

- Arcos(a) + Agcos(b) + Azcos(c) = 0
Asin(a) 4+ Agsin(b) 4+ Assin(c) = 0

(en utilisant que la famille (cos, sin) est libre, ce qu’on peut montrer directement en évaluant une combinaison
linéaire nulle en 0 et /2, ou voir qu’elles sont non proportionnelles, ou encore la voir comme une sous-
famille de la premiére famille libre de cet exercice).
Arcos(a) + Agcos(b) + Agcos(c) =
Asin(a) + Agsin(b) 4+ Assin(c) = 0
et 2 équations : il admet une infinité de solution, et en particulier une solution non nulle. Donc on peut
trouver A1, A2, A3 non tous nuls tels que Ay fi + Aafo + Asfs = 0 : la famille (f1, fo, f3) est donc liée (et ce
peu importe le choix de a, b, ¢).

Soient A, i, v € R tels que Asin + pcos + v(z +— sin(2z)) = 0. En évaluant en 0 on trouve = 0. En
évaluant en 7/2 on déduit A = 0. Puis en évaluant en 7/4 on trouve v = 0. Donc A =p=v=0: la
famille est libre.

Mais le systéme { est un systéme linéaire homogéne a 3 inconnues,

Exercice 10 [Altération d’une famille libre 1]

Soient A, p, v tels que Ay + 2) + p(z+ ) +v(z +y) = 0.

Alors : A+ p)z+ A+ v)y+ (p+v)x = 0.

Par liberté de (z,y,2) : A+ p=A+v =pu+v =0. Et en résolvant le systéme qui apparait on trouve
A=pu=v=0.

Donc la famille (y + x, z + z, x + y) est libre.

Exercice 11 [Altération d’une famille libre 2]
Montrons qu’elle est libre si, et seulement si, > a; # —1:

e si)y I, a; #—1: pour simplifier posons o # —1 cette somme .

Soient A1, ..., A\, € R tels que Y \i(x; +y) = 0. Par définition de y, on a donc :

i i <xz + iajx]) = (i )\imi> + (i <i )\ioz]) xj> = i ()\z- + oy i )\j) x; =0

i=1 j=1 i=1 j=1 \i=1 i=1 j=1
et par liberté de la famille des (;), en posant A = > 7| A; :

Vi € [1;n], A+ Aa; =0
En sommant toutes ces égalités, on déduit :
A+ ar=0
donc A = 0 (comme o # —1) puis :
Vie [L;n], \i=—Xa; =0

donc la famille est libre.



e siy »  a; =—1: on veut montrer qu'on peut trouver des A; non tous nuls, de somme )\, tels que :
Vi € [[1;71]], Ai +Aa; =0

et \; = —q; pour tout i convient. Qui sont bien non tous nuls car leur somme vaut —a =1 # 0.

Exercice 12 [Familles libres sur les fonctions]
On pourrait procéder par récurrence sur n. On va le faire de maniére directe :

e pour les f; : on travaille avec les ordres de grandeur. Quitte & renumeéroter les ju;, on suppose que
p < pg < -+ < pi,. Et alors chaque f; est un o(f;) pour j > i.
Soient Ay,..., A\, € R tels que > \;f;i = 0. Alors :

n—1
=1

donc A, = o(1) : donc A, = 0.
On répéte ainsi de suite pour montrer que tous les \; sont nuls. On verra d’autres rédactions plus
convaincantes plus tard (par 'absurde, ou par récurrence Amora).

e pour les g; : on peut invoquer un argument de dérivabilité : considérons A, ..., A, tels que > \;jg; =
0. Fixons i € [1;n] et montrons que \; = 0.

On a: N\g; = —Z#i Ajg;. La fonction g; n’est pas dérivable en p;, a 'inverse des g; pour j # ¢
(comme les p; sont deux-a-deux distincts). Donc, par combinaison linéaire, \;g; est dérivable en p;,
ce qui impose que \; = 0 comme g; n’est pas dérivable en ;.

Donc tous les A\; sont nuls : la famille est libre.

Exercice 13 [Base sur les suites périodiques]
On fixe p € N* :

1. On peut prendre la famille ug, u1, ..., u,—1 définie par :

1 sin=k|[p
0 sinon

e [0p— 1], Y € N, ) - {

2. Notons déja que, si une suite géométrique est p-périodique, sa raison est une racine p-éme de 'unité.
Par linéarité, il suffirait de considérer les suites géométriques de premier terme 1, c’est-a-dire qu’on
peut considérer les suites ug, u1, ..., u,—1 définies par :

Yk € [0;p — 1], ¥n € N, uy(n) = 2P = kn,

oil w = e?"/P,

Le coté libre et générateur se montre simultanément, en montrant l'inversibilité de la matrice A =
(@W?)osijcp-1-

Pour son inversibilité, montrons que AX =0 < X = 0. Soit X = (z;). Si AX = 0, alors pour tout
i€[0;p—1] on a:

p—1 '
Z zj(w) =0
=0

donc les w' sont p racines distinctes du polynome P = Z?;é 2; X7, qui est de degré au plus p—1: il
est donc nul. Donc tous les z; sont nuls. Ce qui prouve l'inversibilité de A.

6



Exercice 14 [Somme et intersection d’espaces vectoriels]
On procéde par double implication :

esiFF=G:alors F+G={r+ylzeFlyeGt={r+ylz,ye F}=F=G=FNG;
esi FNG=F+G:

- F={z+ylzeFy=0}Cc{r+ylzre FFye G} =F+G=FNGCGdonc FF CG,;

— démonstration analogue pour avoir G C F
et donc F' = GG par double inclusion.

Soient F, G deux sev de E. Montrer que : FNG=F+ G < F =G.

Exercice 15 [Espaces de fonctions supplémentaires]
Considérons f € C(R,R). Montrons séparément que f s’écrit de maniére unique comme f; + g1 et
Jo+g2pour f1 € F1, fr € Fyet g1,90 € G

e pour la premiére écriture : procédons par analyse-synthése :

— analyse : posons f = f; + g1 pour fi € Fy et g3 € G. Notons g; = Aid (par définition de G).
En évaluant en 0 et en 1 on trouve :

f0) = f1(0) et f(1) = fi(1) + A
et comme f; € F} on déduit fi(1) = f1(0) donc nécessairement A = f(1) — f(0) et ainsi :
g =(f(1) = f(O)id et fi = f = (f(1) — f(0))id.
— synthése : il est clair que de telles fonctions conviennent.

Et ainsi f s’écrit de maniére unique comme somme d’un élément de Fi et d’un élément de G, ce qui
prouve bien que F} et GG sont supplémentaires.

e pour la seconde : on procéde de méme. On trouve que 'unique écriture est :

- (o 500 ) (o[ 109)s)

-~ -~

€Fy eG

Exercice 16 [Espaces de polynémes supplémentaires]
Soit P € E. Notons P = a + bX + cX? +dX3. Alors :

PeGeat+b+e+d=b+2c+3d=0< b = —2¢c—3d
a = c+2

& P=c(1-2X+X?)+d(2-3X + X?)
donc G = Vect(1 — 2X + X2, 2 — 3X + X3) (qui est une base : deux vecteurs non proportionnels).

Et on aurait F' = Vect(1, X), avec encore une base (la base canonique).

On considére F = R3[X]|, FF = Ry[X] et G = {P € E|P(1) = P'(1) = 0}. Montrer que F' et G sont
supplémentaires dans E. et donner la décomposition correspondante pour 1, X, X2, X3.



