PCSI2 Lycée Champollion 20252026

Feuille d’exercices n°14 : Calculs matriciels

Exercice 1 [Matrices qui commutent]

1. Pour M € M, (K) et 4,5 € [1;n] :
e la matrice M E; ; est une matrice dont la j-éme colonne est la i-éme colonne de M ;
e la matrice F; ;M est une matrice dont la i-éme ligne est la j-éme ligne de M

Pour que M et E;; commutent, ces matrices doivent étre égales. Comme il y a toujours un 0 (dans
E; ;M ou ME; ;) a part en le coefficient d’indice (¢, j) on a :

Ve, lel:n], k#i=m;, =0et k#j=mj

et 'égalité du coefficient d’indice (7, j) donne : m; ; = m,; ;.
Donc M a :

e sa i-éme colonne nulle (sauf éventuellement le i-éme coefficient) ;
e sa j-éme ligne nulle (sauf éventuellement le j-éme coefficient) ;

e ces deux coefficients égaux.
Et il est clair qu’une telle matrice convient.
2. Pour A = (a; ;) € M, (K), lamatrice AD (resp. DA) est la matrice obtenue a partir de A en multipliant
la i-éme ligne (resp. colonne) de A par ;.

Et directement :
AD = DA < Vi,j, AD[i,j] = DAJI, j]
= Vi,j, )\iai,j = )\jai,j
& Vi, g, AN = )‘j ou a;; = 0
= Vi,j, i;éjéam:()
3. e avec la question 1 : si une matrice commute avec toute autre matrice, elle commute avec toutes les
matrices élémentaires. Et donc tout coefficient d’indice (7, j) pour i # j est nulle (la matrice est
diagonale) et tous les coefficients diagonaux sont égaux. Donc il ne reste que les matrices scalaires.

e avec la question 2 : si elle commute avec toutes les matrices diagonales qui ont tous les coefficients
distincts, alors elle est diagonale. Mais, si deux coefficients diagonaux sont distincts (disons ceux
d’indices ¢ et j pour i # j), elle ne commute pas avec E; ;. Donc tous ses coefficients diagonaux
sont égaux : elle est scalaire.

Exercice 2 [Matrices et complexes]
1. Calcul direct : J = —1,
2. On pose z =a+ibet 2/ =a’ + b (forme algébrique) :
M)+ M) =(aly + b))+ (d'L+VJ)=(a+d )+ (b+ V)] =M(z+2)
M(2)M(2') = (ala+bJ)(a' I+ J) = ad' Iy+ba' J+ab' J+bb' J* = (aa’—bb' ) [+ (ba' +ab')J = M(z2").

3. On montre par récurrence que M (e?)" = M (e™?). Et deux possibilités :



® 0On pose z = peie pour 6, p € R (forme algébrique, mais pas obligatoire) et on a :
M(2)" = (M(pew))” - (M(p)M(eia))n _ (pM(ew))n M ()
et donc :

M(z)" =1« (P"COS<”9> —p"Sin(nG)) _ (1 0) - { peos(nf) =

1
p"sin(nf)  p"cos(nh) 0 1 psin(nf) = 0
< p"(cos(nf) +isin(nd)) = 2" =1 2z € U,.

e on montre de maniére analogue que M(z)" = M(2"). Et on prouve l'injectivité de M : z —
M (z) (il suffit de regarder les coefficients de la colonne de gauche). Et on a alors :

ME=Le M) =L=M1)e"=1<2cU,.

Exercice 3 [Matrices stochastiques]

1. Pour i fixé, la somme Z?Zl a;; est la somme des coefficients sur une ligne : cela veut dire qu’une
matrice stochastique a ses coefficients dont la somme sur chaque ligne vaut 1.

Comme tous ses coefficients sont positifs (par la premiére propriété), chaque coefficient est compris
entre 0 et 1.

2. Par définition, le vecteur AX est une matrice colonne obtenue en sommant toutes les colonnes de A.
C’est-a-dire : .
Zj:l ai,j
n

AX — Zj:1 a2,

Z?:l n,j
et donc AX = X équivaut a la seconde propriété. La positivité des coefficients de A étant la premiére,
on a I’équivalence.

1
3. On pourrait tout faire un peu brutalement en exprimant les coefficients de AB et §(A+B) : pour la

somme les calculs ne sont pas trop horribles, mais pour le produit c’est moins pratique. On préfére
utiliser la question 2. Si A, B sont stochastiques, alors tous leurs coefficients sont positifs ou nuls, et
AX =BX =X.

1
e les coefficients de §<A + B) (moyenne des coefficients de A et B) sont bien positifs ou nuls et :
1 1 1

1
donc §(A + B) est bien stochastique ;

e les coefficients de AB sont positifs ou nuls (en tant que sommes et produits de nombres positifs
ou nuls, par formule du produit matriciel) et :

(AB)X = A(BX) = AX = X

donc AB est bien stochastique.

Exercice 4 [Construction d’une matrice symétrique]
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1. La matrice B est définie comme le produit d’une matrice de taille (p,n) par une matrice de taille (n, p)
: c’est une matrice carrée de taille p. De plus :

BT = (ATA)" = (A)" (AT) = ATA=B

donc B € S,(R).
Et pour i € [[1;p] on a :

k=1 k=1

2. On déduit que Y7 b;; > 0 (somme de termes positifs ou nuls) avec égalité si, et seulement si, ils sont
tous nuls. Mais par écriture de b;;, on a également :

biﬂ' =0 Vk e [[1,]3]], Qi = 0

et finalement la somme des b;; est nulle si, et seulement si, tous les a;; sont nuls, ¢’est-a-dire que A est
nulle (tous ses coefficients sont nuls).

Pour p = 1, on obtient A matrice colonne est nulle si, et seulement si, ATA = 0 : la matrice B a un
seul coefficient, qui est donc égal a la somme de son coefficient diagonal.

Exercice 5 [Produit de matrices symétriques]
Pour de tels A, B :

AB € S,(K) < (AB)' = AB < B'"A" = AB < BA= AB
et la condition nécessaire et suffisante est que A et B commutent.

Exercice 6 [Inversibilité et matrices antisymétriques]
1. Posons X € M,,1(K). Alors :
(BX)'(BX) = XT"(B"B)X = XT"(I,—A)(I,+A)X = XTX+XTAX - XTAX - XTA’X = XTX+(AX)T(A

et on utilise le résultat de I'exercice 4 : les quantités (BX)T(BX), XX et (AX)T(AX) sont positives
ou nulles, avec nullité si, et seulement si, respectivement BX =0, X =0, AX = 0. Et donc :

BX=0s (BX)'(BX) =0 X"X = (AX)T(AX)=0& X =4X =0
ce qui donne bien I’équivalence, et I'inversibilité de B.

2. Les matrices A et —A étant antisymétriques, les matrices (I, — A) et (1, + A) sont inversibles. Et on
a:
CT = (I, — A" (I, + A)

(la transposée échange les produits, et 'inverse d’une transposée est la transposée de I'inverse).

Mais on a :
(I, —A) (I, +A)=1,— A? = (I, +A) (I, — A)

et donc :
CTC =L, —A) T+ AT —A) (L, +A) " =L, - A" (L —A) L+ A) I+ A =1,

donc CTC = 1I,,, et donc C~' = CT. On pose C = (I,, — A)(I,, + A)~'. Montrer que CT = C~L.



Exercice 7 [Calculs d’inverses]
On calcule tous les inverses par pivot (soit comme un systéme, soit directement en échelonnant par les
lignes ou les colonnes, et bien évidemment pas les deux en méme temps) :

2 41 3 -2 -1
I.A=(2 5 1]:At'=[-1 1 0

1 21 -1 0 2

1 2 3 1 0 -1
2.B=1(0 11 B1t=[0 3 -1

0 3 0 -2 1

-1 0 2 -1 2 0
3.C=10 0 1 cCt=10 1 -1

0 -1 1 0 1 O

Exercice 8 [Diagonalisation, puissance, et suites]|
On considére les matrices :

-2 =2 1 0 1
A=11 0 —-1]leP =11 -1 0
3 —2 1 11 1
-1 1 1
1. On calcule P"'=| -1 0 1 | ce qui donne:
2 -1 -1
0 00
P'AP=[0 1 0| =D
0 2

qui est diagonale. Pour tout £ € N* on a :

00 0
DF=10 1 0
0 ok

mais aussl :

D¥ = (P7'AP)(P7'AP)...(P'AP) = P'AFP

(avec les PP~! qui s’éliminent, un peu comme un télescopage, ou si on préfére on peut trés bien le
rédiger a 'aide d’une récurrence). Et finalement :

2k+l _2k _2k
AF = pDFp = 1 0 —1
2k+1 -1 _2k 1 — 2k

(formule bien évidemment fausse pour k = 0, mais la formule pour D¥ était fausse pour k = 0)

Tn
2. On pose, pour n € N: X, = | y, | de sorte que :
Zn

1
Xo=10| etVneN, X, =AX,.
0
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Par récurrence on déduit que :
vneN, X, =A"X,

et finalement :

r, = 2F!
Vn € N¥, Yo = 1
z, = 211

(formule & nouveau fausse pour n = 0).

Exercice 9 [Puissances de petites matrices]

01
0 2 01

Par bindme, pour tout n € N :

1. (1 1) : binéme en écrivant A = I+ B ou B = ( ) On a B? = B et pour tout n € N*: B" = B.

n

A" = (I, + B)" = (Z)Bk=12+zn: <Z>B:IQ+(2”—1)B: (é 2”2; 1)

k=0 k=1

La matrice A est inversible (triangulaire supérieure avec 1 et 2, non nuls, sur la diagonale). Donc A" a
un sens pour n € Z. Vérifions si la formule fonctionne pour n < 0. Soit n € N :

1 2" -1 . 1 27" —-1\ I
0o 2 0o 2™ )2
et donc (1 2= 1) est inversible d’inverse (1 2 - 1). Mais A" = (1 2" - 1). Donc A™ =

0o 2" o 2 o 2

(A7) = (A7)~ = (é 2_2_; 1). Et finalement la formule reste valable pour n < 0, donc :

. (1 27—1
YneZ, A _<O on )

2. (g Z) : binéme en écrivant A = al, +bB ou B = <8 (1)> qui est nilpotente (B? = 0) et par binome
pour tout n € N* :
1

- n n—1
A" = (CL]Q + bB)n = (Z) an_kkak — Z (Z) an—kkak _ an]2 + an_le _ <a0 naan b)
k=0 k=0

Formule valable pour n = 0. Et méme valable pour n € Z si la matrice est inversible (correspond au
cas a # 0) avec la méme preuve que le 1.

1 . - . .
3. (g 0) : pas de binome efficace ici. On calcule les premiéres puissances :

A% =2], A3 =24 A*=41I,, ...

et par récurrence :
WneN, A" — 2 22 A S? n est 1mpa1r
221y si n est pair

1
Formule valable pour n € Z en notant que A~! = §A.

5



sin(f)  cos(0)
que J? = —1I,, ce qui fait des calculs en raisonnant modulo 4 sur les puissances, et un "#*" permet de
calculer plus rapidement) ; ou par récurrence, en reconnaissant la situation de I'exercice 2, et on trouve

= (b))

avec formule valable pour n € Z (méme méthode qu’avant pour le montrer).

N (cos(e) —sin(6)

) : A = cos(0)Ir+sin(6)J dont on peut calculer les puissances par binome (en utilisant

Exercice 10 [Puissances de grandes matrices]
On regarde a chaque fois les premiéres puissances et on cherche si un schéma semble se répéter. On
note k la taille des matrices.

1 ... 1
1. |: : | : A2 = kA (k la dimension) et par récurrence :
1 1
A _{ 1A sioon>1
0 1 1
1 0 ... 0
2. 1. . .| : on calcule les premiéres puissance :
1 0 . 0
k—1 0 0 0 k—1 k—1
0 1 kE—1 0 0
A? = puis A® = , =(k—1)A
0 1 1 kE—1 0 0

On a récursivement les puissances :

Iy, st n=0
A" = (k—1)""A si n>1impair .

n—2

(k—1)72 A% si n>2pair

1 1 0 0
01 1
3.1t o0 °-. *-. t|]:onprocede par bindme en écrivant A = I, + N ou N est nilpotente (triangulaire
Do .11
00 ... 0 1

stricte). Et les puissances de N contiennent une diagonale de 1 qui se décale de plus en plus haut. Ce
qui donne :

. 0 1 n "("271) '
min(n,k—1) )
A= (L+N) = Y (7)]\”:
i=0 -
0 0 1 2lnd)
0 0 1 n




et on retrouve (pas étonnant) une matrice triangulaire supérieure avec des 1 sur la diagonale. La formule
reste valable pour n € 7Z en écrivant les coefficients binomiaux en extension (comme des polynomes)
mais ce n’est pas demandé. La preuve se fait comme & I'exercice précédent.

Exercice 11 [Puissances et inverse]

1. On a la matrice N du 3 de l'exercice précédent. Les puissances de T' décalent la diagonale de 1 et
on trouve : A = 37— T* (avec n la taille des matrices).

2. Notons déja que A est inversible (triangulaire avec tous les coefficients diagonaux égaux a 1, donc
non nuls). On fait apparaitre une sorte de télescopage, un peu comme pour la somme des termes
d’une suite géométrique, on alors la factorisation de (A™ — B™) faite en cours. On trouve :

n—1
(In-TA=(I,-T)) T'=I}-T"=1,
k=0

donc A~t=1,-T.

Et on a quasiment la méme situation que I'exercice précédent pour calculer les puissances de A.

Exercice 12 [Diagonalisation et puissances]

On trouve P~1 = (_21 _11) puis D = P'AP = (é g) qui est diagonale. Pour tout k € Z (valable

comme D inversible) :

k_ 1k _ kp—1 _ 10 1 2 — 3k 3k —1
A = (PDPY)k = PDFP P(O 2 ) P = (0" e o)

Exercice 13 [Racine carrée matricielle 1]

1. Si M? = A, alors MA = M3 = AM donc A et M commutent.

a b c
2. Onnote M= |d e f| etonaalors:
g h 1
a 4b a4+ 20+ 9c a+g b+h c+1
MA=\|d 4e d+2e+9f )| =AM = |4d+2g 4e+2h 4f+2i
g 4h g+2h+9 9g 9h 9¢
ce qui impose g =d =h =
a 0 ¢ a®> 0 (a+1i)c 1
Donc M= |0 e f|lpuisM?2=|0 e (e+i)f]| quidonnea==1,e=242,i=243,c= ,
00 i 00 i @t

et f=
e

par les valeurs de a, e, i.

- (avec a+1 et e+ toujours non nuls). Donc 8 possibilités en tout, entiérement déterminées
i



Exercice 14 [Racine carrée matricielle 2]
On considére la matrice :

2 11
A=1|1 2 1
1 1 2

et on souhaite trouver une matrice M € M3(R) telle que M? = A.

111
1. On fait un binéme en écrivant A = I3+ Bavec B= |1 1 1] dont les puissances sont données par :
111
n Is; si n=0
V”EN’B_{?)“B sion>1

et finalement pour tout n € N :

An+2 4" -1 4" -1

w1 e "\ B m—1_ 1 . .
A_Z<k)B _]n+< (k)s )B_In+ s B=g |41 A2 an

k=0 k=1 4n —1 4" —1 4"+ 2

2. Avec n = 1/2, on trouve :

M =

4 1
1
3 1 4
11

>~ =

qui vérifie bien M? = A (calcul immédiat). On a méme mieux : la formule convient aussi pour n € Z :
elle donne 'inverse de A, ainsi que ses puissances.

0 2 3 0 0 4
3. On décompose A = Is+ N ou N = |0 0 2| est nilpotente avec N> = [0 0 0| et pour tout
0 00 000
E>3: NF=0.
Par bindéme pour tout n € N :
n(n—1) 1 2n (2n+1)n
A= L3+ N)"=I3+nN+——-N>= [0 1 2n
2
0 0 1
1 11
qui donne avecn=1/2: M= [0 1 1| qui vérifie bien M? = A.
0 01

Et comme pour le premier cas la formule A™ précédente est méme valable pour n € Z.

Exercice 15 [Matrice circulante]
Chaque puissance de A décale la diagonale de 1 vers le haut. On trouve donc A™ = [,,, donc A est
inversible avec :

o 0 0 ... 1
1 0 0 :
Al — gn-1 — 0
: 1 0 0
0 1 0



Exercice 16 [Somme de matrices nilpotentes]|
On considére A, B nilpotentes d’indice respectivement n, m. Alors, si A et B commutent, A + B est
nilpotente d’indice au plus n +m — 1 car par formule du bin6me :

n+m—1 n—1 n+m—1
(A + B)n+m71 _ Z (Z) Aanerflfk _ Z (Z) Aan+mflfk + Z <Z> Aanerflfk —04+40=0
k=n

k=0 k=0

ol tous les termes de la premiére somme sont nuls car :
k<n—1=n+m—-1—k>m= B 1F=
et tous ceux de la seconde sont nuls car :
k>n= A*=0.

et on ne peut pas diminuer I'exposant en général (par exemple en prenant A = 0 on a une égalité), mais
c’est parfois moins que n+m — 1 (prendre par exemple A = B, qui donne n comme indice de nilpotence).
0 1
00
nilpotentes (matrices triangulaires strictes), leur somme n’est pas nilpotente (elle est inversible).

Pour le cas de non commutativité, si on prend A = ( ) et B = AT, qui sont toutes les deux

Exercice 17 [Inversibilité et polynoéme annulateur]
Comme ay - a, # 0, on déduit que ap #0 et a, #0. Et on a :

ap AP + ... asA? + a1 A = —apl,

donc :
a _ Q2 ay
A(——”AP 1—---——A——[n) — 1,
ao a, a,
. . . a _ as a1
donc A est inversible d’inverse ——2 AP~ — ... — =4 — =] .
ao a, a,

Exercice 18 [Nilpotence de matrice triangulaires]

C’est la méme preuve que dans le cours pour montrer que le produit de deux matrices triangulaires
supérieures est triangulaire supérieure. On coupe la somme qui définit le coefficient d’indice (7,j) du
produit pour montrer qu’il est nul en montrant que tous ses termes sont nuls.

Avec k = n, on obtient :

Vi, j € ﬂl,n]], Z’+n>j:>ai,j =0

mais la condition i +n > j étant alors toujours vérifiée, on trouve que 7,7 (K) = {0} (le singleton dont le
seul élément est la matrice nulle). Une matrice triangulaire de diagonale nulle est un élément de 7, (K)
(ou sa transposée 'est si on a une matrice triangulaire inférieure). Le résultat précédent et une récurrence
immédiate montre que la puissance k-éme d’un tel élément est dans 7,7 (K). Donc la puissance n-éme est
dans 7.7 (K), donc est nulle : une telle matrice est donc nilpotente !

Exercice 19 [Matrices nilpotentes et matrices inversibles]
1. Formule du cours (on fait apparaitre un télescopage).

2. Si N est nilpotente, en notant p € N tel que N? =0, on a :

p—1
I, =I? — N” = (I, — N) (ZN’“)
k=0

ce qui assure que (I, — N) est inversible d’inverse S2_) N*. Le cas de I,, + N se traite en changeant N

en —N (également nilpotente), qui donne linversibilité de (I, + N) avec comme inverse > _ i (—N)*.
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3. Supposons A inversible commutant avec N nilpotente. Notons p € N tel que N? = 0. Alors :
A+ N=A(I,+A'N)
avec A~'N nilpotente, comme par commutativité :
(ATIN)YP = APNP =0

et par le résultat précédent on déduit que I, + A~'N est inversible d’inverse : S0_) A=F Nk,

Par inversibilité de A, on déduit que A + N est inversible d’inverse :

p—1
(Z Ak]vk) Afl
k=0
Pour la réciproque : si A+ N est inversible, alors A+ N commute avec —N (comme A et N commutent

avec N, le calcul est immédiat) et on peut appliquer le point précédent pour déduire que A = A+ N—N
est inversible. Ce qui donne bien la réciproque.

Exercice 20 [Matrice a diagonale dominante]
Par I’absurde, supposons A non inversible. Alors I'équation AX = 0 posséde une solution non nulle.
T

T2
Notons X = | . | une telle solution. Notons iy € [1;n] tel que |z;,| = max|z;|. Alors la ip-éme ligne de

Tn
AX (qui vaut 0) donne :

Jj=1
donc :
LigWig,ig = E :ai(»jx]
J#io
puis en divisant par z;, # 0 :
Lj
ig,io = E Qig,j
.. xzo
J#io
et par inégalité triangulaire :
Ly
ig io] < Y Naiosl |[=2] <D laig
— Ly Y
J#i0 —— J#io

<1

d’ou la contradiction.
Donc A est inversible.

Exercice 21 [Non-inversibilité d’une matrice antisymétrique]

0 a b
On y a de maniére brutale : une telle matrice est de la forme A= | —a 0 ¢ |. Si deux des scalaires
—b —c 0
a, b, c sont nuls : on a une ligne ou une colonne nulle, donc une matrice non inversible.
c c
Sinon : A | —b | avec | —b | # 0 donc A n’est pas inversible.
a a
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