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Feuille d'exercices no14 : Calculs matriciels

Exercice 1 [Matrices qui commutent]

1. Pour M ∈ Mn(K) et i, j ∈ J1;nK :

� la matrice MEi,j est une matrice dont la j-ème colonne est la i-ème colonne de M ;

� la matrice Ei,jM est une matrice dont la i-ème ligne est la j-ème ligne de M

Pour que M et Ei,j commutent, ces matrices doivent être égales. Comme il y a toujours un 0 (dans
Ei,jM ou MEi,j) à part en le coe�cient d'indice (i, j) on a :

∀k, l ∈ J1 : nK, k ̸= i ⇒ mk,i = 0 et k ̸= j ⇒ mj,l

et l'égalité du coe�cient d'indice (i, j) donne : mi,j = mj,j.

Donc M a :

� sa i-ème colonne nulle (sauf éventuellement le i-ème coe�cient) ;

� sa j-ème ligne nulle (sauf éventuellement le j-ème coe�cient) ;

� ces deux coe�cients égaux.

Et il est clair qu'une telle matrice convient.

2. Pour A = (ai,j) ∈ Mn(K), la matrice AD (resp. DA) est la matrice obtenue à partir de A en multipliant
la i-ème ligne (resp. colonne) de A par λi.

Et directement :
AD = DA ⇔ ∀i, j, AD[i, j] = DA[i, j]

⇔ ∀i, j, λiai,j = λjai,j
⇔ ∀i, j, λi = λj ou ai,j = 0
⇔ ∀i, j, i ̸= j ⇒ ai,j = 0

3. � avec la question 1 : si une matrice commute avec toute autre matrice, elle commute avec toutes les
matrices élémentaires. Et donc tout coe�cient d'indice (i, j) pour i ̸= j est nulle (la matrice est
diagonale) et tous les coe�cients diagonaux sont égaux. Donc il ne reste que les matrices scalaires.

� avec la question 2 : si elle commute avec toutes les matrices diagonales qui ont tous les coe�cients
distincts, alors elle est diagonale. Mais, si deux coe�cients diagonaux sont distincts (disons ceux
d'indices i et j pour i ̸= j), elle ne commute pas avec Ei,j. Donc tous ses coe�cients diagonaux
sont égaux : elle est scalaire.

Exercice 2 [Matrices et complexes]

1. Calcul direct : J = −I2

2. On pose z = a+ ib et z′ = a′ + ib′ (forme algébrique) :

M(z) +M(z′) = (aI2 + bJ) + (a′I2 + b′J) = (a+ a′)I2 + (b+ b′)J = M(z + z′)

M(z)M(z′) = (aI2+bJ)(a′I2+b′J) = aa′I2+ba′J+ab′J+bb′J2 = (aa′−bb′)I2+(ba′+ab′)J = M(zz′).

3. On montre par récurrence que M(eiθ)n = M(einθ). Et deux possibilités :



� on pose z = ρeiθ pour θ, ρ ∈ R (forme algébrique, mais pas obligatoire) et on a :

M(z)n =
(
M(ρeiθ)

)n
=
(
M(ρ)M(eiθ)

)n
=
(
ρM(eiθ)

)n
= ρnM(einθ)

et donc :

M(z)n = I2 ⇔
(
ρncos(nθ) −ρnsin(nθ)
ρnsin(nθ) ρncos(nθ)

)
=

(
1 0
0 1

)
⇔
{

ρncos(nθ) = 1
ρnsin(nθ) = 0

⇔ ρn(cos(nθ) + isin(nθ)) = zn = 1 ⇔ z ∈ Un.

� on montre de manière analogue que M(z)n = M(zn). Et on prouve l'injectivité de M : z 7→
M(z) (il su�t de regarder les coe�cients de la colonne de gauche). Et on a alors :

M(z)n = I2 ⇔ M(zn) = I2 = M(1) ⇔ zn = 1 ⇔ z ∈ Un.

Exercice 3 [Matrices stochastiques]

1. Pour i �xé, la somme
∑n

j=1 ai,j est la somme des coe�cients sur une ligne : cela veut dire qu'une
matrice stochastique a ses coe�cients dont la somme sur chaque ligne vaut 1.

Comme tous ses coe�cients sont positifs (par la première propriété), chaque coe�cient est compris
entre 0 et 1.

2. Par dé�nition, le vecteur AX est une matrice colonne obtenue en sommant toutes les colonnes de A.
C'est-à-dire :

AX =


∑n

j=1 a1,j∑n
j=1 a2,j
...∑n

j=1 an,j


et donc AX = X équivaut à la seconde propriété. La positivité des coe�cients de A étant la première,
on a l'équivalence.

3. On pourrait tout faire un peu brutalement en exprimant les coe�cients de AB et
1

2
(A+B) : pour la

somme les calculs ne sont pas trop horribles, mais pour le produit c'est moins pratique. On préfère
utiliser la question 2. Si A,B sont stochastiques, alors tous leurs coe�cients sont positifs ou nuls, et
AX = BX = X.

� les coe�cients de
1

2
(A+B) (moyenne des coe�cients de A et B) sont bien positifs ou nuls et :

1

2
(A+B)X =

1

2
(AX +BX) =

1

2
(X +X) = X

donc
1

2
(A+B) est bien stochastique ;

� les coe�cients de AB sont positifs ou nuls (en tant que sommes et produits de nombres positifs
ou nuls, par formule du produit matriciel) et :

(AB)X = A(BX) = AX = X

donc AB est bien stochastique.

Exercice 4 [Construction d'une matrice symétrique]
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1. La matrice B est dé�nie comme le produit d'une matrice de taille (p, n) par une matrice de taille (n, p)
: c'est une matrice carrée de taille p. De plus :

BT = (ATA)T = (A)T
(
AT
)T

= ATA = B

donc B ∈ Sp(R).
Et pour i ∈ J1; pK on a :

bi,i =
n∑

k=1

[AT ]i,k[A]k,i =
n∑

k=1

a2k,i ⩾ 0

2. On déduit que
∑p

i=1 bi,i ⩾ 0 (somme de termes positifs ou nuls) avec égalité si, et seulement si, ils sont
tous nuls. Mais par écriture de bi,i, on a également :

bi,i = 0 ⇔ ∀k ∈ J1; pK, ak,i = 0

et �nalement la somme des bi,i est nulle si, et seulement si, tous les ak,i sont nuls, c'est-à-dire que A est
nulle (tous ses coe�cients sont nuls).

Pour p = 1, on obtient A matrice colonne est nulle si, et seulement si, ATA = 0 : la matrice B a un
seul coe�cient, qui est donc égal à la somme de son coe�cient diagonal.

Exercice 5 [Produit de matrices symétriques]
Pour de tels A,B :

AB ∈ Sn(K) ⇔ (AB)T = AB ⇔ BTAT = AB ⇔ BA = AB

et la condition nécessaire et su�sante est que A et B commutent.

Exercice 6 [Inversibilité et matrices antisymétriques]

1. Posons X ∈ Mn,1(K). Alors :

(BX)T (BX) = XT (BTB)X = XT (In−A)(In+A)X = XTX+XTAX−XTAX−XTA2X = XTX+(AX)T (AX)

et on utilise le résultat de l'exercice 4 : les quantités (BX)T (BX), XTX et (AX)T (AX) sont positives
ou nulles, avec nullité si, et seulement si, respectivement BX = 0, X = 0, AX = 0. Et donc :

BX = 0 ⇔ (BX)T (BX) = 0 ⇔ XTX = (AX)T (AX) = 0 ⇔ X = AX = 0

ce qui donne bien l'équivalence, et l'inversibilité de B.

2. Les matrices A et −A étant antisymétriques, les matrices (In − A) et (In + A) sont inversibles. Et on
a :

CT = (In − A)−1 (In + A)

(la transposée échange les produits, et l'inverse d'une transposée est la transposée de l'inverse).

Mais on a :
(In − A)(In + A) = In − A2 = (In + A)(In − A)

et donc :

CTC = (In − A)−1 (In + A) (In − A) (In + A)−1 = (In − A)−1 (In − A) (In + A) (In + A)−1 = In

donc CTC = In, et donc C−1 = CT . On pose C = (In − A)(In + A)−1. Montrer que CT = C−1.
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Exercice 7 [Calculs d'inverses]
On calcule tous les inverses par pivot (soit comme un système, soit directement en échelonnant par les

lignes ou les colonnes, et bien évidemment pas les deux en même temps) :

1. A =

2 4 1
2 5 1
1 2 1

 : A−1 =

 3 −2 −1
−1 1 0
−1 0 2

.

2. B =

1 2 3
0 1 1
0 2 3

 : B−1 =

1 0 −1
0 3 −1
0 −2 1

.

3. C =

−1 0 2
0 0 1
0 −1 1

 : C−1 =

−1 2 0
0 1 −1
0 1 0


Exercice 8 [Diagonalisation, puissance, et suites]

On considère les matrices :

A =

4 −2 −2
1 0 −1
3 −2 −1

 et P =

1 0 1
1 −1 0
1 1 1

 .

1. On calcule P−1 =

−1 1 1
−1 0 1
2 −1 −1

 ce qui donne :

P−1AP =

0 0 0
0 1 0
0 0 2

 = D

qui est diagonale. Pour tout k ∈ N∗ on a :

Dk =

0 0 0
0 1 0
0 0 2k


mais aussi :

Dk = (P−1AP )(P−1AP ) . . . (P−1AP ) = P−1AkP

(avec les PP−1 qui s'éliminent, un peu comme un télescopage, ou si on préfère on peut très bien le
rédiger à l'aide d'une récurrence). Et �nalement :

Ak = PDkP−1 =

 2k+1 −2k −2k

1 0 −1
2k+1 − 1 −2k 1− 2k

 .

(formule bien évidemment fausse pour k = 0, mais la formule pour Dk était fausse pour k = 0)

2. On pose, pour n ∈ N : Xn =

xn

yn
zn

 de sorte que :

X0 =

1
0
0

 et ∀n ∈ N, Xn+1 = AXn.
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Par récurrence on déduit que :
∀n ∈ N, Xn = AnX0

et �nalement :

∀n ∈ N∗,


xn = 2k+1

yn = 1
zn = 2k+1 − 1

(formule à nouveau fausse pour n = 0).

Exercice 9 [Puissances de petites matrices]

1.

(
1 1
0 2

)
: binôme en écrivant A = I2+B où B =

(
0 1
0 1

)
. On a B2 = B et pour tout n ∈ N∗ : Bn = B.

Par binôme, pour tout n ∈ N :

An = (I2 +B)n =
n∑

k=0

(
n

k

)
Bk = I2 +

n∑
k=1

(
n

k

)
B = I2 + (2n − 1)B =

(
1 2n − 1
0 2n

)
La matrice A est inversible (triangulaire supérieure avec 1 et 2, non nuls, sur la diagonale). Donc An a
un sens pour n ∈ Z. Véri�ons si la formule fonctionne pour n < 0. Soit n ∈ N :(

1 2n − 1
0 2n

)
·
(
1 2−n − 1
0 2−n

)
= I2

et donc

(
1 2n − 1
0 2n

)
est inversible d'inverse

(
1 2−n − 1
0 2−n

)
. Mais An =

(
1 2n − 1
0 2n

)
. Donc A−n =

(A−1)n = (An)−1 =

(
1 2−n − 1
0 2−n

)
. Et �nalement la formule reste valable pour n < 0, donc :

∀n ∈ Z, An =

(
1 2n − 1
0 2n

)
.

2.

(
a b
0 a

)
: binôme en écrivant A = aI2 + bB où B =

(
0 1
0 0

)
qui est nilpotente (B2 = 0) et par binôme

pour tout n ∈ N∗ :

An = (aI2 + bB)n =
n∑

k=0

(
n

k

)
an−kbkBk =

1∑
k=0

(
n

k

)
an−kbkBk = anI2 + an−1bB =

(
an nan−1b
0 an

)
Formule valable pour n = 0. Et même valable pour n ∈ Z si la matrice est inversible (correspond au
cas a ̸= 0) avec la même preuve que le 1.

3.

(
0 1
2 0

)
: pas de binôme e�cace ici. On calcule les premières puissances :

A2 = 2In, A3 = 2A, A4 = 4In, . . .

et par récurrence :

∀n ∈ N, An =

{
2

n−1
2 A si n est impair
2

n
2 I2 si n est pair

.

Formule valable pour n ∈ Z en notant que A−1 =
1

2
A.

5



4.

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
: A = cos(θ)I2+sin(θ)J dont on peut calculer les puissances par binôme (en utilisant

que J2 = −I2, ce qui fait des calculs en raisonnant modulo 4 sur les puissances, et un "ik" permet de
calculer plus rapidement) ; ou par récurrence, en reconnaissant la situation de l'exercice 2, et on trouve
:

An =

(
cos(nθ) −sin(nθ)
sin(nθ) cos(nθ)

)
avec formule valable pour n ∈ Z (même méthode qu'avant pour le montrer).

Exercice 10 [Puissances de grandes matrices]
On regarde à chaque fois les premières puissances et on cherche si un schéma semble se répéter. On

note k la taille des matrices.

1.

1 . . . 1
...

...
1 . . . 1

 : A2 = kA (k la dimension) et par récurrence :

An =

{
Ik si n = 0

kn−1A si n ⩾ 1
.

2.


0 1 . . . 1
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0

 : on calcule les premières puissance :

A2 =


k − 1 0 . . . 0
0 1 . . . 1
...

...
. . .

...
0 1 . . . 1

 puis A3 =


0 k − 1 . . . k − 1

k − 1 0 . . . 0
...

...
. . .

...
k − 1 0 . . . 0

 = (k − 1)A.

On a récursivement les puissances :

An =


Ik si n = 0

(k − 1)
n−1
2 A si n ⩾ 1 impair

(k − 1)
n−2
2 A2 si n ⩾ 2 pair

.

3.


1 1 0 . . . 0

0 1 1
. . .

...
... 0

. . . . . .
...

...
...

. . . 1 1
0 0 . . . 0 1

 : on procède par binôme en écrivant A = Ik+N où N est nilpotente (triangulaire

stricte). Et les puissances de N contiennent une diagonale de 1 qui se décale de plus en plus haut. Ce
qui donne :

An = (Ik +N)n =

min(n,k−1)∑
i=0

(
n

i

)
N i =



1 n n(n−1)
2

. . . . . . . . . n...(n−k+1)
k!

0 1 n n(n−1)
2

. . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

0 0 1 n n(n−1)
2

0 . . . . . . . . . 0 1 n


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et on retrouve (pas étonnant) une matrice triangulaire supérieure avec des 1 sur la diagonale. La formule
reste valable pour n ∈ Z en écrivant les coe�cients binomiaux en extension (comme des polynômes)
mais ce n'est pas demandé. La preuve se fait comme à l'exercice précédent.

Exercice 11 [Puissances et inverse]

1. On a la matrice N du 3 de l'exercice précédent. Les puissances de T décalent la diagonale de 1 et
on trouve : A =

∑n−1
k=0 T

k (avec n la taille des matrices).

2. Notons déjà que A est inversible (triangulaire avec tous les coe�cients diagonaux égaux à 1, donc
non nuls). On fait apparaître une sorte de télescopage, un peu comme pour la somme des termes
d'une suite géométrique, on alors la factorisation de (An −Bn) faite en cours. On trouve :

(In − T )A = (In − T )
n−1∑
k=0

T k = Inn − T n = In

donc A−1 = In − T .

Et on a quasiment la même situation que l'exercice précédent pour calculer les puissances de A.

Exercice 12 [Diagonalisation et puissances]

On trouve P−1 =

(
2 −1
−1 1

)
puis D = P−1AP =

(
1 0
0 3

)
qui est diagonale. Pour tout k ∈ Z (valable

comme D inversible) :

Ak = (PDP−1)k = PDkP−1 = P

(
1 0
0 3k

)
P−1 =

(
2− 3k 3k − 1

2− 2 · 3k 2 · 3k − 1

)
.

Exercice 13 [Racine carrée matricielle 1]

1. Si M2 = A, alors MA = M3 = AM donc A et M commutent.

2. On note M =

a b c
d e f
g h i

 et on a alors :

MA =

a 4b a+ 2b+ 9c
d 4e d+ 2e+ 9f
g 4h g + 2h+ 9i

 = AM =

 a+ g b+ h c+ i
4d+ 2g 4e+ 2h 4f + 2i

9g 9h 9i

 .

ce qui impose g = d = h = b = 0

Donc M =

a 0 c
0 e f
0 0 i

 puis M2 =

a2 0 (a+ i)c
0 e2 (e+ i)f
0 0 i2

 qui donne a = ±1, e = ±2, i = ±3, c =
1

a+ i

et f =
2

e+ i
(avec a+ i et e+ i toujours non nuls). Donc 8 possibilités en tout, entièrement déterminées

par les valeurs de a, e, i.
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Exercice 14 [Racine carrée matricielle 2]
On considère la matrice :

A =

2 1 1
1 2 1
1 1 2


et on souhaite trouver une matrice M ∈ M3(R) telle que M2 = A.

1. On fait un binôme en écrivant A = I3 +B avec B =

1 1 1
1 1 1
1 1 1

 dont les puissances sont données par :

∀n ∈ N, Bn =

{
I3 si n = 0

3n−1B si n ⩾ 1

et �nalement pour tout n ∈ N :

An =
n∑

k=0

(
n

k

)
Bk = In +

(
n∑

k=1

(
n

k

)
3k−1

)
B = In +

4n − 1

3
B =

1

3

4n + 2 4n − 1 4n − 1
4n − 1 4n + 2 4n − 1
4n − 1 4n − 1 4n + 2

 .

2. Avec n = 1/2, on trouve :

M =
1

3

4 1 1
1 4 1
1 1 4


qui véri�e bien M2 = A (calcul immédiat). On a même mieux : la formule convient aussi pour n ∈ Z :
elle donne l'inverse de A, ainsi que ses puissances.

3. On décompose A = I3 + N où N =

0 2 3
0 0 2
0 0 0

 est nilpotente avec N2 =

0 0 4
0 0 0
0 0 0

 et pour tout

k ⩾ 3 : Nk = 0.

Par binôme pour tout n ∈ N :

An = (I3 +N)n = I3 + nN +
n(n− 1)

2
N2 =

1 2n (2n+ 1)n
0 1 2n
0 0 1



qui donne avec n = 1/2 : M =

1 1 1
0 1 1
0 0 1

 qui véri�e bien M2 = A.

Et comme pour le premier cas la formule An précédente est même valable pour n ∈ Z.

Exercice 15 [Matrice circulante]
Chaque puissance de A décale la diagonale de 1 vers le haut. On trouve donc An = In, donc A est

inversible avec :

A−1 = An−1 =


0 0 0 . . . 1

1 0 0
. . .

...
...

. . . . . . . . . 0
... . . . 1 0 0
0 . . . . . . 1 0


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Exercice 16 [Somme de matrices nilpotentes]
On considère A,B nilpotentes d'indice respectivement n,m. Alors, si A et B commutent, A + B est

nilpotente d'indice au plus n+m− 1 car par formule du binôme :

(A+B)n+m−1 =
n+m−1∑
k=0

(
n

k

)
AkBn+m−1−k =

n−1∑
k=0

(
n

k

)
AkBn+m−1−k +

n+m−1∑
k=n

(
n

k

)
AkBn+m−1−k = 0 + 0 = 0

où tous les termes de la première somme sont nuls car :

k ⩽ n− 1 ⇒ n+m− 1− k ⩾ m ⇒ Bn+m−1−k = 0

et tous ceux de la seconde sont nuls car :

k ⩾ n ⇒ Ak = 0.

et on ne peut pas diminuer l'exposant en général (par exemple en prenant A = 0 on a une égalité), mais
c'est parfois moins que n+m− 1 (prendre par exemple A = B, qui donne n comme indice de nilpotence).

Pour le cas de non commutativité, si on prend A =

(
0 1
0 0

)
et B = AT , qui sont toutes les deux

nilpotentes (matrices triangulaires strictes), leur somme n'est pas nilpotente (elle est inversible).

Exercice 17 [Inversibilité et polynôme annulateur]
Comme a0 · ap ̸= 0, on déduit que a0 ̸= 0 et ap ̸= 0. Et on a :

apA
p + . . . a2A

2 + a1A = −a0In

donc :

A

(
−ap
a0

Ap−1 − · · · − a2
ap

A− a1
ap

In

)
= In

donc A est inversible d'inverse −ap
a0

Ap−1 − · · · − a2
ap

A− a1
ap

In.

Exercice 18 [Nilpotence de matrice triangulaires]
C'est la même preuve que dans le cours pour montrer que le produit de deux matrices triangulaires

supérieures est triangulaire supérieure. On coupe la somme qui dé�nit le coe�cient d'indice (i, j) du
produit pour montrer qu'il est nul en montrant que tous ses termes sont nuls.

Avec k = n, on obtient :
∀i, j ∈ J1;nK, i+ n > j ⇒ ai,j = 0

mais la condition i+ n > j étant alors toujours véri�ée, on trouve que T +
n (K) = {0} (le singleton dont le

seul élément est la matrice nulle). Une matrice triangulaire de diagonale nulle est un élément de T +
1 (K)

(ou sa transposée l'est si on a une matrice triangulaire inférieure). Le résultat précédent et une récurrence
immédiate montre que la puissance k-ème d'un tel élément est dans T +

k (K). Donc la puissance n-ème est
dans T +

n (K), donc est nulle : une telle matrice est donc nilpotente !

Exercice 19 [Matrices nilpotentes et matrices inversibles]

1. Formule du cours (on fait apparaître un télescopage).

2. Si N est nilpotente, en notant p ∈ N tel que Np = 0, on a :

In = Ipn −Np = (In −N)

(
p−1∑
k=0

Nk

)

ce qui assure que (In−N) est inversible d'inverse
∑p−1

k=0N
k. Le cas de In+N se traite en changeant N

en −N (également nilpotente), qui donne l'inversibilité de (In +N) avec comme inverse
∑p−1

k=0(−N)k.

9



3. Supposons A inversible commutant avec N nilpotente. Notons p ∈ N tel que Np = 0. Alors :

A+N = A(In + A−1N)

avec A−1N nilpotente, comme par commutativité :

(A−1N)p = A−pNp = 0

et par le résultat précédent on déduit que In + A−1N est inversible d'inverse :
∑p−1

k=0A
−kNk.

Par inversibilité de A, on déduit que A+N est inversible d'inverse :(
p−1∑
k=0

A−kNk

)
A−1

Pour la réciproque : si A+N est inversible, alors A+N commute avec −N (comme A et N commutent
avec N , le calcul est immédiat) et on peut appliquer le point précédent pour déduire que A = A+N−N
est inversible. Ce qui donne bien la réciproque.

Exercice 20 [Matrice à diagonale dominante]
Par l'absurde, supposons A non inversible. Alors l'équation AX = 0 possède une solution non nulle.

Notons X =


x1

x2
...
xn

 une telle solution. Notons i0 ∈ J1;nK tel que |xi0| = max|xi|. Alors la i0-ème ligne de

AX (qui vaut 0) donne :

0 =
n∑

j=1

ai0,jxj

donc :
xi0ai0,i0 =

∑
j ̸=i0

ai0,jxj

puis en divisant par xi0 ̸= 0 :

ai0,i0 =
∑
j ̸=i0

ai0,j
xj

xi0

et par inégalité triangulaire :

|ai0,i0| ⩽
∑
j ̸=i0

|ai0,j|
∣∣∣∣ xj

xi0

∣∣∣∣︸ ︷︷︸
⩽1

⩽
∑
j ̸=i0

|ai0,j|

d'où la contradiction.
Donc A est inversible.

Exercice 21 [Non-inversibilité d'une matrice antisymétrique]

On y a de manière brutale : une telle matrice est de la forme A =

 0 a b
−a 0 c
−b −c 0

. Si deux des scalaires

a, b, c sont nuls : on a une ligne ou une colonne nulle, donc une matrice non inversible.

Sinon : A

 c
−b
a

 avec

 c
−b
a

 ̸= 0 donc A n'est pas inversible.

10


