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Feuille d'exercices no13 : Suites numériques

Exercice 1 [Inégalité et limites] La suite (un − vn) tend vers l1 − l2 et on se ramène au résultat du
cours.

Si l1 = l2 on ne peut rien conclure (on pourrait de toute façon échanger les rôles de u et v donc ce
serait louche de conclure quelque chose).

Exercice 2 [Critère de convergence de suites]

1. unvn ⩽ un, vn ⩽ 1 et on conclut par encadrement que lim un = lim vn = 1 ;

2. a ⩾ un = (un + vn) − vn ⩾ (un + vn) − b et on conclut par encadrement que lim un = a puis que
lim vn = b.

3. par combinaisons linéaires : un =
(un + vn) + (un − vn)

2
donc lim un =

a+ b

2
et vn =

(un + vn)− (un − vn)

2

donc lim vn =
a− b

2

4. On fait apparaître des formes canoniques : u2
n + unvn + v2n = (un + vn/2)

2 + 3/4v2n ⩾ 3/4v2n ⩾ 0 donc
lim vn = 0 par encadrement et pareil pour un.

Exercice 3 [Limites version ε]

1. pour A ∈ R, n0 = ⌊eA⌋+ 1 convient ;

2. pour ε > 0, n0 = ⌊−ln(ε)⌋+ 1 convient ;

3. pour ε > 0, n0 = ⌊1/ε⌋+ 1 convient ;

4. pour A ∈ R, n0 = ⌊A2⌋+ 1 convient.

Exercice 4 [Quelques calculs de limites]

1. 1−sin2(2n)√
n

→ 0 par encadrement ;

2.
√
n
⌊

1√
n

⌋
→ 0 (stationnaire à partir de n = 2) ;

3.
√
n+4

n−
√
n
→ 0 (par équivalent ;

4.
√
n2 + n+ 1−

√
n2 − n+ 1 → 1 par dl (on se ramène en 1 dans les racines) ou quantité conjuguée, ou

encadrement d'intégrales ;

5. an−bn

an+bn
équivalents suivant que a < b, a > b ou a = b qui donne −1, 1 ou 0 comme limite ;

6.
(
sin
(
1
n

))1/n → 1 : on passe en forme exponentielle et
1

n
ln(sin(1/n)) =

1/n

sin(1/n)
· sin(1/n)ln(sin(1/n))

qui tend vers 0 par produit, limite classique et croissances comparées, et composition.

Exercice 5 [Encadrements et limites de sommes]

1.
∑n

k=1

√
k ⩾

∑
1 ⩾ n → +∞ par divergence par minoration ;



2.
∑n

k=1
1√
k
⩾
∑

1√
n
=

√
n → +∞ par divergence par minoration ;

3. 0 ⩽
∑n

k=1
1

n2+k2
⩽
∑

1
n2 = 1

n
→ 0 par encadrement ;

4. 0 ⩽
∑2n

k=n+1
1
k2

⩽
∑

1
(n+1)2

⩽ n
(n+1)2

→ 0 par encadrement ;

5. n2

n2+n
=
∑

n
n2+n

⩽
∑n

k=1
n

n2+k
⩽
∑

n
n2+1

= n2

n2+1
qui tend vers 1 par encadrement ;

6. n√
n2+n

⩽
∑

1√
n2+n

⩽
∑n

k=1
1√

n2+k
⩽
∑

1√
n2+1

= n√
n2+1

qui tend vers 1 par encadrement.

Exercice 6 [Critère de d'Alembert]

1. On aurait sinon l < 0 et donc
un+1

un

< 0 à partir d'un certain rang, ce qui est impossible.

2. à partir d'un rang n0 :
un+1

un

< q avec q =
l + 1

2
∈]l, 1[.

Par itération : un ⩽ qn−n0un0 et donc un → 0 par encadrement.

3. à partir d'un rang n0 :
un+1

un

> q avec q =
l + 1

2
∈]1, l[.

Par itération : un ⩾ qn−n0un0 et donc un → +∞ par divergence par minoration.

4. Prendre un = 1, un = n et un = 1/n pour voir que tout est possible

Exercice 7 [Critère de Cauchy]

On a pareil, avec les majorations/minorations un ⩽ qn ou un ⩾ qn pour q =
1 + l

2
, et les mêmes

conclusions.
Les trois exemple du cas n = 1 restent valable.

Exercice 8 [Vrai�Faux autour des suites]

1. F : un = n et vn = −1;

2. V : si N,M sont les périodes des deux suites, leur somme est N ×M périodique ;

3. F : un = (−2)n ;

4. F : un = 1/n ou 1/n2 ;

5. F : un = (1 + 1/n) ou (1 + 1/n2) ;

6. V : u2
n =

√
u4
n et continuité de x 7→

√
x ;

7. F : un = (−1)n/n ;

8. F : un = n ;

9. F : un = (−1)n.

Exercice 9 [Un calcul de limite]
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1. valeurs dans [0; 1] : par encadrement.

Monotonie : un+1 − un =
1

n(n+ 1)

(
n√
n+ 1

−
∑n

k=1

1√
k

)
< 0 (inégalité terme à terme)

décroissante minorée : converge vers l ∈ [0; 1] (même [0; 1[ car stricte décroissance).

2. u2n =
1

2n

∑2n
k=1

1√
k
=

un

2
+

1

2n

∑2n
k=n+1

1√
k
⩽

un

2
+

1

2
√
n

Passage à la limite : l ⩽
l

2
+ 0 donc l ⩽ 0 donc l = 0.

Exercice 10 [Suite dé�nie implicitement 1]

1. fn(x) = xn − cos(x) : f ′
n(x) = nxn−1 + sin(x) ⩾ 0 sur [0; 1] avec égalité ssi x = 0.

Donc fn strictement croissante sur [0; 1] avec fn(0) = −1 < 0 < 1− cos(1) = f(1).

Par corollaire TVI : un unique x ∈ [0; 1] tel que f(x) = 0.

2. (xn) croissante car xn ∈ [0; 1] donc xn+1
n < xn

n puis xn+1
n −cos(xn) < xn

n−cos(xn) = 0 = xn+1
n+1−cos(xn+1)

et on conclut xn < xn+1 par stricte croissance de fn+1.

Par l'absurde, si l ̸= 1 : alors l ∈ [0; 1[. Donc xn
n → 0 (encadrement) puis 0 = xn

n−cos(xn) → −cos(l) <
0. Contradiction.

Donc l = 1.

Exercice 11 [Suite dé�nie implicitement 2]

1. fn : x 7→ x + x2 + · · · + xn est strictement croissante sur R+ avec f(0) = 0 et f(1) = n ⩾ 1 donc
fn(x) = 1 possède une unique solution dans ]0; 1].

2. fn(1/2) = 1− 1/2n < 1 donc 1/2 < xn

3. Monotonie : fn+1(xn) = 1 + xn+1
n > 1 = fn+1(xn+1) donc (xn) est décroissante

Comme x2 < 1 et 1/2 est un minorant de (xn) on a le résultat par limite monotone.

4. On montre l = 1/2 :

� méthode 1 : f(1/2 + 1/2n) ⩾ 1 donc 1/2 ⩽ xn ⩽ 1/2 + 1/2n puis par encadrement ;

� 1 = xn + · · · + xn
n = xn · x

n
n − 1

xn − 1
→ l

1− l
comme xn

n → 0 (avec 0 ⩽ xn ⩽ x2 < 1 puis puissance).

Donc 1 =
l

1− l
donc l = 1/2.

Exercice 12 [Limites de sinus ou de cosinus]

1. un+1 = cos(α)un − sin(α)vn et vn+1 = sin(α)un + cos(α)vn.

2. si (un) converge vers l : vn =
cos(α)un − un+1

sin(α)
tend vers l

cos(α)− 1

sin(α)
;

si (vn) converge vers l : un =
vn+1 − cos(α)vn

sin(α)
converge vers l

1− cos(α)

sin(α)
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3. Par l'absurde, si l'une des deux converge, les deux convergent. En notant l1, l2 les limites on trouve
l1 = l2 = 0. Mais on devrait avoir l21 + l22 = 0. Contradiction.

4. si α ∈ πZ, la suite (vn) est constante (nulle) et (un) est soit constante de valeur 1, soit oscille entre 1
et −1.

Exercice 13 [Moyenne arithmético-géométrique]

1. a+ b− 2
√
ab =

(√
a−

√
b
)2

⩾ 0

2. Par le 1. on a déjà pour tout n ∈ N∗ : un ⩽ vn. On déduit que pour tout n ∈ N∗ : un ⩽ un+1 ⩽ vn+1 ⩽

vn. En e�et : un+1 =
√
unvn ⩾

√
unun = un et vn+1 =

un + vn
2

⩽
vn + vn

2
= vn.

Et donc (un) et (vn) sont croissantes et décroissantes à partir du rang 1. Et (un)n⩾1 est majorée var v1
tandis que (vn)n⩾1 est minorée par u1. Donc les suites convergent.

Si l1, l2 sont leur limite : l2 =
l1 + l2

2
donc l1 = l2.

Pour les majorations, on pouvait aussi voir par récurrence que (un) et (vn) sont à valeurs dans

[0;max(a, b)] (l'initialisation est immédiate, et l'hérédité se fait avec les croissances de x 7→ x+ y

2
et x 7→ √

xy sur R+, à y ∈ R+ �xé.

Autre méthode : pour tout n ∈ N avec n ⩾ 1, on a :

0 ⩽ vn+1 − un+1 ⩽ vn+1 − un =
un + vn − 2un

2
=

1

2
(vn − un)

donc en itérant : 0 ⩽ vn+1 − un+1 ⩽
1

2n
(v1 − u1) donc un − vn) tend vers 0, et les suites (un) et (vn)

sont adjacentes. Elles convergent donc vers une même limite.

3. Pour u0 = v0 = a, les suites (un) et (vn) sont constantes de valeur a donc M(a, a) = a.

Pour v0 = 0, on a : ∀n ∈ N∗, un = 0. Donc M(a, 0) = 0 (et on aurait de même M(0, a) = 0). On peut
sinon montrer que (vn) est géométrique de raison 1/2 donc converge vers 0.

On montre que les suites associées à λa, λb sont les multiplications par λ des suites associées à a, b.
Donc M(λa, λb) = λM(a, b).

Exercice 14 [Séries alternées]

1. Par décroissance de (un), on trouve :

S2n+2 − S2n = u2n+2 − u2n+1 ⩽ 0 et S2n+3 − S2n+1 = −u2n+3 + u2n+2 ⩾ 0

ce qui donne les monotonies.

Et comme (un) tend vers 0 :
S2n+1 − S2n = −u2n+1 → 0

Donc les suites (S2n) et (S2n+1) sont adjacentes.
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2. Les suites (S2n) et (S2n+1) convergent donc vers la même limite l, qui est la limite de (Sn), qui converge
bien. Et on a pour tout n ∈ N :

S2n+1 ⩽ l ⩽ S2n

donc |S2n − l| = S2n − l ⩽ S2n − S2n+1 = u2n+1 et de plus :

S2n+1 ⩽ l ⩽ S2n+2

donc |S2n+1− l| = l−S2n+1 ⩽ S2n+2−S2n+1 = u2n+2 ce qui prouve l'inégalité demandée par disjonction
de cas, suivant la parité de n.

Exercice 15 [Limite d'une somme] Monotonie : pour n ∈ N∗ :

un+1−un =
1√
n+ 1

+2
√
n+ 1−2

√
n =

2
√

n(n+ 1)− 2(n+ 1/2)√
n+ 1

=
2√
n+ 1

(√
n2 + n−

√
n2 + n+ 1/4

)
< 0

donc (un) est strictement décroissante, et :

vn+1 − vn = · · · = 2√
n+ 1

(√
n2 + 3n+ 9/4−

√
n2 + 3n+ 2

)
> 0

donc (vn) est strictement croissante.

Et un − vn = 2
(√

n+ 1−
√
n
)
∼ 1√

n
→ 0.

Donc les suites (un) et (vn) sont adjacentes.
On note l leur limite commune. On a : un = l + o(1) donc

∑
1√
k
= 2

√
n + l + o(1) ∼ 2

√
n et

1

nα

∑
1√
k
∼ 2

nα−1/2
tend vers 0 si α > 1/2, 2 si α = 1/2 et +∞ si α < 1/2.

Exercice 16 [Une suite complexe]
Par l'absurde si elle convergeait : notons l sa limite, qui véri�e |l| = 1 (par passage à la limite).
Mais on a : eiln(2n) = eiln(2)eiln(n) tend vers eiln(2) · l, mais aussi vers l (suite extraite). Donc eiln(2) = 1

(mais c'est faux) ou l = 0 (mais c'est faux). D'où la contradiction.

Exercice 17 [Suites réelles et suites complexes]

La relation de récurrence devient : wn+1 =
1 + i

2
wn =

1√
2
eiπ/4wn. Donc (wn) est géométrique de raison

q =
eiπ/4√

2
qui véri�e donc |q| < 1. Donc (wn) converge vers 0, donc (un) et (vn) aussi.

Exercice 18 [Suite extraite et suites monotone]
(un) est monotone, donc elle a une limite l (�nie ou non). La suite extraite (u2n) a la même limite.

Comme elle converge, alors l est �nie donc (un) converge.

Exercice 19 [Limites de suites extraites]
Il su�t de prouver que les limites de (u2n) et de (u2n+1) sont les mêmes. Posons a, b, c les limites des

trois suites extraites :

� la suite (u6n) est extraite de (u2n) donc tend vers a, et de (u3n) donc tend vers b. Par unicité de la
limite : a = b.

� la suite (u6n+3) est extraite de (u2n+1) donc tend vers c, et de (u3n) donc tend vers b. Par unicité de
la limite : b = c.
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Donc a = b = c, donc a = c : (un) converge.

Exercice 20 [Suite extraites d'une suite de chi�res]
Les décimales de π sont des nombres compris entre 0 et 9. Il y en a une in�nité, donc l'un des chi�res

(on ne sait pas lequel a priori) se répète à l'in�ni. On extrait de la suite des chi�res seulement ce chi�re :
on a une sous-suite constante, donc convergente.

Exercice 21 [Propriétés de suites extraites]
Soit (un) croissante (le cas décroissant se traite de même). Considérons φ extractrice et posons vφ suite

extraite de u. Montrons que v est croissante.
Soit n ∈ N : par (stricte) croissance de φ : φ(n+1) > φ(n). Donc par croissance de u : uφ(n+1) ⩾ uφ(n)

Donc v est croissante. Et le même raisonnement montre que la décroissance est conservée, tout comme
la stricte monotonie (la stricte croissance de φ est indispensable).

Autre méthode : on peut directement reconnaître une composée (et on sait comment se comporte la
composition avec les monotonie).

Les suites extraites d'une suite périodique ne sont pas périodiques pour autant : si on prend (un) =
((−1)n) qui est 2-périodique, et φ(n) = n! alors vn prend comme valeurs −1,−1, 1, 1, 1, 1, 1, . . . qui n'est
pas périodique (problème sur les premiers termes). Et on peut imaginer aussi φ qui prendrait comme
valeurs un nombre impair, puis pair, puis deux impairs, puis un pair, puis trois impairs, puis un pair, puis
quatre impairs, etc. (possible par l'in�nité de l'ensemble des nombres pairs et des nombres impairs), et la
suite extraite ne serait alors clairement pas périodique.

Exercice 22 [Suite de suites extraites]

Avec p = n on a : 0 ⩽ u2n ⩽
2n

n2
=

2

n
→ 0 donc la suite (u2n) tend vers 0.

Avec p = n+ 1 on a : 0 ⩽ u2n+1 ⩽
2n+ 1

n(n+ 1)
→ 0 donc la suite (u2n+1) tend vers 0.

Donc (un) tend vers 0.

Exercice 23 [Suites arithmético-géométriques]

1. un+1 = 2un + 1 : l = −1 et (vn) = (un + 1) géométrique de raison 2 donc vn = 2nv0 = 2n(a + 1)
puis un = 2n (a+ 1) − 1 qui tend vers −1 si a = −1 (constante), vers +∞ si a > −1 (strictement
croissante) ou −∞ si a < −1 (strictement décroissante).

2. un+1 =
un + 1

2
: l = 1 et (vn) = (un − 1) géométrique de raison 1/2 donc vn =

v0
2n

=
a− 1

2n
puis

un =
a− 1

2n
+ 1 qui tend toujours vers 1 (opération sur les limites).

Exercice 24 [Doubles suites arithmético-géométriques]

1. On remplace directement : pour tout n ∈ N :

un+1 − vn+1 = 3un + 2vn − 2un − 3vn = un − vn.

2. On a pour tout n ∈ N : un − vn = u0 − v0 = −1 puis :

un+1 = 3un+2vn = 3un−2(un−vn)+2un = 5un+2 et vn+1vn+1 = 2un+3vn = 2(un−vn)+2vn+3vn = 5vn−2

3. Pour (un) : on a l = −1/2 puis un = 5n (u0 + 1/2)− 1/2 = 5n
3

2
− 1

2
.

Pour (vn) : on a l = 1/2 puis vn = 5n (v0 − 1/2) + 1/2 = 5n
3

2
+

1

2
.

Et on retrouve que un − vn = −1 : tout va bien !
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Exercice 25 [Suites linéaires récurrentes d'ordre 2]

1. polynôme caractéristique : X2− 4X +4 = (X − 2)2 : donc un = (an+ b)2n pour a, b constantes. On
a u0 = 1 = b et u1 = 0 = 2a+ 2b donc un = (1− n)2n.

2. polynôme caractéristique : X2−3X+1 =

(
X − 3 +

√
5

2

)(
X − 3−

√
5

2

)
: donc un = a

(
3−

√
5

2

)n

+

b

(
3 +

√
5

2

)n

avec a =
1−

√
5

2
et b =

1 +
√
5

2
. Et au passage on échange a et b en échangeant ±

√
5,

donc c'est rassurant.

3. polynôme caractéristique : X2−X+1 =

(
X − 1 + i

√
3

2

)(
X − 1− i

√
3

2

)
= (X−eiπ/3)(X−e−iπ/3)

: donc un peut s'écrire un = λeinπ/3 + µeinπ/3 = acos
(nπ

3

)
+ bsin

(nπ
3

)
avec λ = µ = 1 ou a = 2 et

b = 0 (fait avec u0 = 2 et u1 = 1 pour que les calculs soient moins horribles).

4. polynôme caractéristique : X2 − 2cos(θ)X + 1 = (X − eiθ)(X − e−iθ) : et on a deux cas :

� si θ ̸= 0[π] : alors on a deux racines complexes conjuguées donc un peut s'écrire un = λeinθ +

µeinθ = acos (nθ) + bsin (nθ) avec λ = −µ =
1

sin(θ)
et a = 0 et b =

2

sin(θ)
(cohérent avec le

choix de θ comme dénominateur doit être non nul)

� si θ = 0[2π] : alors 1 est racine double et un = (an+ b) = 2n

� si θ = π[2π] : alors (−1) est racine double et un = (an+ b) · (−1)n = −2n(−1)n.

(fait avec u0 = 0 et u1 = 2 pour que les calculs soient moins horribles)

Exercice 26 [Limites de suites récurrentes]

1. un+1 = u2
n : on pose f : x 7→ x2 et g = f − id ; on se ramène à R+ qui est stable par f est sur lequel

f est (strictement) croissante, légitime comme un ∈ R+ pour tout n ⩾ 1. Donc (un) est monotone à
partir du rang 1, et sa monotonie est donnée par le signe de g : x 7→ x2 − x = x(x− 1) qui est positive
sur ]1; +∞[, négative sur ]0; 1[ et nulle en 1 et 0 (on ne s'intéresse qu'à R+). Et ainsi on a trois cas :

� si u1 = 0 ou 1 (c'est-à-dire u0 = 0 ou ±1) : alors (un) est stationnaire (à partir du rang 1) et
converge vers u1 = 0 si 0 et 1 si u0 = ±1 ;

� si u1 ∈]0; 1[ (c'est-à-dire u0 ∈] − 1; 0[∪]0; 1[) : alors (un) est décroissante à partir du rang 1. Elle
est minorée par 0 donc converge. Elle converge vers un point �xe de f (par continuité de f), donc
vers 0 ou 1. Mais étant décroissante elle ne peut pas converger vers 1. Donc elle converge vers 0.

� si u1 ∈]1; +∞[ (c'est-à-dire si u0 ∈]−∞;−1[∪]1; +∞[) : alors (un) est croissante à partir du rang
1. Elle a une limite qui, si elle est �nie, est un point �xe de f . Mais elle est croissante, et de
premier terme strictement plus grand que 1, donc ne peut converger ni vers 1, ni vers 0 : ce sont
les seuls points �xes, donc elle ne converge pas. En tant que suite croissante elle tend donc vers
+∞.

2. un+1 = u2
n + 1 : on pose f : x 7→ x2 et g = f − id ; on se ramène cette fois-ci à [1; +∞[. Et f étant

croissante sur cet intervalle, g y étant positive, alors (un) est croissante à partir du rang 1, donc a une
limite (�nie ou +∞). Mais f n'a pas de point �xe (l'équation X2 −X +1 = 0 n'a pas de racine réelle),
donc (un) ne peut pas converger, donc (un) tend vers +∞.
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3. un+1 =
√
1 + un : on pose f : x 7→

√
1 + x qui est croissante sur [−1;+∞[ (stable) et g = f − id.

L'unique point �xe de f est α =
1 +

√
5

2
. Et g est positive sur [−1;α[, négative sur ]α; +∞[, ne

s'annulant qu'en α. On déduit :

� si u0 ∈ [−1;α[ : (un) est croissante ; facile de voir qu'elle est majorée par α (par récurrence avec la
croissance de f , ou on peut aussi voir qu'elle changerait de monotonie sinon), donc converge vers
un point �xe (par continuité de f), donc vers α ;

� si u0 = α : (un) est constante de valeur α ;

� si u0 > α : (un) est décroissante ; elle est minorée (clair par 0, mais on peut aussi montrer qu'elle
est minorée par α par récurrence) ; donc elle converge (limite monotone) vers un point �xe (par
continuité de f) donc vers α.

Et donc peu importe la valeur de u0, la suite (un) tend vers α.

4. un+1 = 1 + ln(un) : on pose f : x 7→ 1 + ln(x) : problème ici car f est dé�nie sur R∗
+, qui n'est pas

stable. Donc on veut la restreindre à [1; +∞ (qui est bien stable lui), et sur lequel f est croissante. Par
inégalité classique, g = f − id est négative, ne s'annulant qu'en 1 (qui est donc l'unique point �xe de
f), donc (un) est toujours décroissante. On a trois cas :

� si u0 > 1 : on montre par récurrence que un > 1 et on a donc une suite bien dé�nie, décroissante,
minorée (par 1), qui converge vers un point �xe (continuité de f), donc vers 1 ;

� si u0 = 1 : la suite (un) est constante de valeur 1 (donc converge vers 1) ;

� sinon : elle est décroissante, donc ne peut converger, donc n'est pas minorée, ce qui fait que la
suite (un) n'est plus dé�nie à partir d'un certain rang (elle doit être positive, donc minorée, pour
être toujours dé�nie) ;

5. un+1 = eun − 1 : autre inégalité de classique, mais pas de problème de dé�nition cette fois-ci. On
travaille sur R (stable par f : x 7→ ex − 1) et sur lequel g = f − id est positive (donc (un) est toujours
croissante), ne s'annulant qu'en 0 (l'unique point �xe de f). Et ainsi :

� si u0 < 0 : la suite (un) est croissante, majorée par 0 (par récurrence), donc converge vers un point
�xe de f (continuité) donc vers 0 ;

� si u0 = 0 : la suite est constante de valeur 0 ;

� si u0 > 0 : la suite est croissante, donc a une limite ; si elle convergeait, sa limite serait 0 (seul
point �xe), ce qui est interdit par la monotonie de (un) et le fait que u0 > 0. Et ainsi (un) diverge
: en tant que suite croissante, elle tend vers +∞.

6. un+1 = 1 + u2
n

4
: on pose f : x 7→ x2

4
+ 1, on travaille sur R+ stable, légitimé car un ∈ R+ pour tout

n ⩾ 1, et sur lequel f croissante et g = f − id positive ne s'annulant qu'en 2. Donc (un) est croissante
à partir du rang 1 et :

� si u1 < 2 (c'est-à-dire u0 ∈] − 2; 2[) : (un) est croissante (pas seulement à partir du rang 1), et
majorée par 2 (par récurrence) donc tend vers un point �xe de f (par continuité) donc converge
vers 2 ;

� si u1 = 2 (c'est-à-dire u0 = ±2) : (un) est stationnaire de valeur 2 (à partir du rang 1) donc
converge vers 2 ;

� si u1 > 2 (c'est-à-dire u0 ∈] −∞; 2[∪]2; +∞[) alors (un) est croissante, donc a une limite ; cette
limite, si elle était �nie, serait un point �xe, mais c'est impossible car ce serait 2 (problème avec
la croissance de (un) et que u1 > 2) ; donc (un) tend vers +∞.
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7. un+1 = un + 1
un

: on pose f : x 7→ x + 1/x et on travaille séparément sur R∗
+ ou sur R∗

− (tous les
deux stables) et sur lesquels g = f − id est de signe constant (positive sur R∗

+ et négative sur R∗
−) ne

s'annulant jamais (donc pas de point �xe pour f). Ainsi (un) ne peut pas converger et :

� si u0 > 0 : la suite (un) est à valeurs positives (stabilité de R∗
+ par f) et croissante (signe de g sur

R∗
+) donc a une limite, qui est nécessairement +∞ (continuité de f mais pas de point �xe)

� si u0 < 0 : de même (un) est à valeurs dans R∗
−, décroissante, et tend vers −∞.

Exercice 27 [Équation fonctionnelle et suite linéaire récurrente]

1. Soit n ∈ N :

un+1 = f(un+1) = f(f(un)) = 6un − f(un) = 6un − un+1 = −un+1 + 6un

qui est bien linéaire récurrente d'ordre 2.

2. Le polynôme caractéristique est X2 + X − 6 = (X + 3)(X − 2) donc pour tout n ∈ N : un =
λ(−3)n + µ2n pour λ, µ ∈ R.
Mais f étant étant à valeurs dans R+, on doit avoir λ = 0 (sinon par croissances comparées un ∼
λ(−3)n change in�niment de signe à partir d'un certain rang). Et u0 = a donne : ∀n ∈ N, un = a·2n.

3. Et f(a) = u1 = 2a.

Comme ceci est vrai pour tout a, on déduit : f : x 7→ 2x.
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