
Interrogation 12
Exercice 1 On procède par double implications :

� Supposons que A ∪B = B ∩ C. Alors :

– A ⊂ B : Soit a ∈ A. Alors a ∈ A ∪ B. Donc a ∈ B ∩ C. Donc a ∈ B. D’où
l’inclusion.

– B ⊂ C : Soit b ∈ V . Alors b ∈ A ∪ B. Donc b ∈ B ∩ C. Donc b ∈ C. D’où
l’inclusion.

D’où la première implication.

� Supposons que A ⊂ B et B ⊂ C. Montrons que A∪B = B ∩C par double inclusion
:

– A ∪B ⊂ B ∩ C : soit x ∈ A ∪B. Alors :

* ou bien x ∈ A : mais A ⊂ B donc x ∈ B. Et B ⊂ C donc x ∈ C. Donc
x ∈ B ∩ C ;

* ou bien x ∈ B : mais B ⊂ C donc x ∈ C. Donc x ∈ B ∩ C.

D’où l’inclusion.

– B∩C ⊂ A∪B : soit x ∈ B∩C. Alors x ∈ B. Donc x ∈ A∪B. D’où l’inclusion.

D’où l’égalité par double inclusion, et donc la réciproque.

Et on a donc bien l’équivalence.

Exercice 2 f ◦ g ◦ f est bijective donc :

� f ◦ (g ◦ f) est surjective, donc f est surjective ;

� (f ◦ g) ◦ f est injective, donc f est injective.

Donc f bijective puis g = f−1 ◦ (f ◦ g ◦ f) ◦ f−1 est bijective.

Exercice 3 Si g injective : soient f1, f2 : E → F telles que g ◦ f1 = g ◦ f2. Soit x ∈ E :
g ◦ f1 = g ◦ f2 donc g ◦ f1(x) = g(f1(x)) = g ◦ f2(x) = g(f2(x)) puis f1(x) = f2(x) (par
injectivité de g). Comme ceci est vrai pour tout x ∈ E, on a bien f1 = f2.

Réciproque : soient y1, y2 ∈ F tels que g(y1) = g(y2). Posons f1, f2 : E → F définies
par f1 : x 7→ y1 et x 7→ y2. Alors g ◦ f1 = g ◦ f2 (ce sont les applications constantes de
valeur g(y1) = g(y2)). Donc f1 = f2. Donc y1 = y2. D’où l’injectivité de g.

Exercice 4 1. Soient A,A′ ∈ P(E).
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� Supposons que f(A) ⊂ f(A′) :

Soit x ∈ A.

Alors f(x) ∈ f(A).

Donc f(x) ∈ f(A′).

Ce qui veut dire que : x ∈ f−1(f(A′)).

Et donc : A ⊂ f−1 (f(A′))

� Réciproquement, supposons que A ⊂ f−1 (f(A′)) :

Soit y ∈ f(A).

Alors il existe x ∈ A tel que y = f(x).

Et donc il existe x ∈ f−1 (f(A′)) tel que y = f(x).

Comme x ∈ f−1 (f(A′)), alors f(x) ∈ f(A′).

Et donc y ∈ f(A′).

Et finalement : f(A) ⊂ f(A′).

2. On déduit que :

� si f est injective : soit A ∈ P(E) : comme f(A) ⊂ f(A), A ⊂ f−1(f(A))
par le point précédent. Pour l’inclusion réciproque, soit x ∈ f−1(f(A)). Alors
f(x) ∈ f(A). Donc il existe x′ ∈ A tel que f(x) = f(x′). Par injectivité, x = x′

donc x ∈ A. D’où l’inclusion réciproque ;

� si f vérifie l’assertion : soient x1, x2 ∈ E tels que f(x1) = f(x2). Alors x1 ∈
f−1(f({x2})) = {x2} donc x1 = x2. D’où l’injectivité de f .

Exercice 5 1. Du fait des valeurs de u et v, on a les inégalités pour tout n ∈ N :

unvn ≤ un ≤ 1 et unvn ≤ vn ≤ 1

et on conclut par encadrement que lim un = lim vn = 1 ;

2. On a les inégalités pour tout n ∈ N :

a ≥ un = (un + vn)− vn ≥ (un + vn)− b et b ≥ vn = (un + vn)− un ≥ (un + vn)− a

et on conclut par opération sur les limites et encadrement que lim un = a et que
lim vn = b.

3. On a pour tout n ∈ N : un =
(un + vn) + (un − vn)

2
. Donc par opération sur les

limites : lim un =
a+ b

2
.

Et de même en utilisant que vn =
(un + vn)− (un − vn)

2
on déduit lim vn =

a− b

2
.
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4. On fait apparâıtre des formes canoniques : u2
n + unvn + v2n = (un + vn/2)

2 + 3/4v2n ≥
3/4v2n ≥ 0. Donc par encadrement : lim

3

4
v2n = 0 puis lim |vn| = 0 (par continuité

de x 7→
√

4

3
x en 0). Et finalement par encadrement, comme −|vn| ≤ vn ≤ |vn| on

trouve : lim vn = 0.

Le même raisonnement montre que lim un = 0 également.

Exercice 6 1. Par décroissance de (un), on trouve que pour tout n ∈ N :

S2n+2 − S2n = u2n+2 − u2n+1 ≤ 0 et S2n+3 − S2n+1 = −u2n+3 + u2n+2 ≥ 0

ce qui donne les monotonies.

Et comme (un) tend vers 0 :

S2n+1 − S2n = −u2n+1 → 0

Donc les suites (S2n) et (S2n+1) sont adjacentes.

2. Les suites (S2n) et (S2n+1) convergent donc vers la même limite l, qui est la limite de
(Sn), qui converge bien. Et on a par propriétés des suites adjacentes que pour tout
n ∈ N :

S2n+1 ≤ l ≤ S2n

donc |S2n − l| = S2n − l ≤ S2n − S2n+1 = u2n+1.

Et de même pour tout n ∈ N :

S2n+1 ≤ l ≤ S2n+2

donc |S2n+1 − l| = l − S2n+1 ≤ S2n+2 − S2n+1 = u2n+2.

Ce qui prouve bien l’inégalité demandée par disjonction de cas, suivant la parité de
n.
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