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I Exercices

Exercice 1

1. Soient λ, µ, ν ∈ R tels que λln + µsin + νexp = 0, c'est-à-dire :

∀x ∈ R∗
+, λln(x) + µsin(x) + νexp(x) = 0.

On pourrait évaluer en trois points (par exemple, π, 3π puis π/2) : les deux premières valeurs
donnent un système homogène inversible en λ et ν, qui sont donc nuls, et en évaluant en π/2 on
trouve µ = 0 ce qui prouve que la famille est libre.

On on fait tendre x vers 0 (ce qui donne λ = 0) puis en +∞ (ce qui donne ν = 0) et on évalue en
π/2 (ce qui donne µ = 0).

Dans les deux cas, on prouve bien que la famille est libre.

2. On résout le système (qui n'a qu'une équation). On a :

x+ y + z + t = 0 ⇔ x = −y − z − t

et ainsi F = Vect
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Ce ci assure que F est un espace vectoriel, et que la famille
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famille génératrice.

Reste à montrer qu'elle est libre : soient λ, µ, ν ∈ R tels que :
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Alors, en regardant les trois dernières coordonnées : λ = µ = ν = 0. Donc la famille est libre.

3. La suite nulle tend vers 0, donc c'est un élément de G.

Soient (un), (vn) ∈ G et λ, µ ∈ R. Alors par opération sur les limites, la suite (λun + µvn) tend vers
λ · 0 + µ · 0 = 0. Donc est un élément de G.

Par caractérisation des sous-espaces vectoriels : G est un espace vectoriel, en tant que sous espace
vectoriel de RN.

4. Montrons que c'est un espace vectoriel si, et seulement si, a = 0 (le choix de b n'a pas d'importance)
:

� si c'est un espace vectoriel : il contient la fonction nulle, donc nécessairement a = 0 ;



� réciproquement, si a = 0 : il contient la fonction nulle. Et pour f, g ∈ H0,b et λ, µ ∈ R, on a :

(λf + µg)(b) = λf(b) + µg(b) = 0

donc λf + µg ∈ H0,b.

Et par caractérisation, c'est bien un espace vectoriel.

D'où l'équivalence.

Exercice 2

1. Par dé�nition, on a déjà que F est un sev de E : c'est le sev engendré par u0.

Pour G :

� avec x = y = z = t = 0, on a bien x+ y = 0 = z + t, donc (0, 0, 0, 0) ∈ G ;

� soient u, v ∈ G et λ, µ ∈ R. Notons u = (x1, y1, z1, t1) et v=(x2, y2, z2, t2). Posons w = λu+ µv.
Alors : w = (λx1 + µx2, λy1 + µy2, λz1 + µz2, λt1 + µt2). Mais on a, comme u, v ∈ G :

(λx1+µx2)+(λy1+µy2) = λ(x1+y1)+µ(x2+y2) = λ(t1+z1)+µ(t2+z2) = (λz1+µz2)+(λt1+µt2)

ce qui prouve que w ∈ G.

Et �nalement G est bien un sev de E.

Pour les bases :

� par dé�nition, la famille (u0) engendre F , et elle est libre (constituée d'un vecteur non nul)
donc c'est une base de F ;

� pour x, y, z, t ∈ R, on a par dé�nition de G :

(x, y, z, t) ∈ G ⇔ x = −y + z + t

et ainsi la famille
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 engendre G. Et elle est libre (car famille graduée,

ou on peut poser le système si on préfère) donc c'est une base de G.

2. Pour montrer que F et G sont en somme directe, il su�t de montrer que F ∩ G = {0} (et même
seulement F ∩G ⊂ {0}). Soit u ∈ F ∩G. Alors :

� comme u ∈ F = Vect(u0), il existe λ ∈ R tel que : u = λu0 = (λ, λ, 0, 0) ;

� comme u ∈ G : 2λ = 0 donc λ = 0 ;

et �nalement u = 0 : les espaces F et G sont bien en somme directe.

3. Avec les mêmes notations, pour tout λ ∈ R on a :

u− λu0 = (x− λ, y − λ, z, t)

et donc :
u− λu0 ∈ G ⇔ x− λ+ y − λ = z + t ⇔ λ =

x+ y − z − t

2

ce qui montre bien l'existence et l'unicité d'un tel λ.
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4. Comme on a déjà montré que F et G sont en somme directe, il reste à prouver que E = F +G (et
même seulement E ⊂ F +G).

Soit u ∈ E. Notons λ ∈ R tel que u− λu0 ∈ G. Alors :

u = λu0︸︷︷︸
∈F

+u− λu0︸ ︷︷ ︸
∈G

∈ F +G

Et �nalement : E = F ⊕G, c'est-à-dire que les espaces F et G sont supplémentaires.

5. D'après la question 3, on a λ =
1 + 3− 5− 7

2
= −4.

Et la décomposition est : (1, 3, 5, 7) = (−4,−4, 0, 0)︸ ︷︷ ︸
=4u0∈F

+(5, 7, 5, 7)︸ ︷︷ ︸
∈G

.

Exercice 3 On considère la suite (un) dé�nie par :

u0 ∈ [−1;+∞[ et ∀n ∈ N, un+1 =
u2
n + 2un

4

et on pose pour tout l'exercice f : x 7→ x2 + 2x

4
.

1. La fonction f est une fonction polynomiale du second degré de coe�cient dominant 1/4 > 0 et de
racines −2 et 0, d'où les variations :

x

f(x)

−∞ −1 +∞
+∞+∞

−1
4

−1
4

+∞+∞

Et f − id est aussi polynomiale du second degré de coe�cient dominant 1/4 > 0 et de racines 0 et
2, ce qui donne le tableau de signe :

x

f(x) − x

−∞ 0 2 +∞

+ 0 − 0 +
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2.

−2 −1 1 2 3

−1

1

2

3

4

Cf

y = x

3. On pourrait procéder par récurrence. On procède par disjonction de cas :

� si n = 0 : un = u0 ⩾ −1 par hypothèse ;

� si n > 0 : un = f(un−1) ∈ f(R) = [−1/4;+∞[⊂ [−1;+∞[ d'après les variations de f .

4. La suite (un) est à valeurs dans [−1;+∞[ et f est (strictement) croissante sur [−1;+∞[. Donc la
suite (un) est monotone. Sa monotonie est donnée par le signe de u1 − u0 = (f − id) (u0), et ainsi :

� si u0 < 0 : elle est croissante ;

� si u0 ∈]0; 2[ : elle est décroissante ;

� si u0 > 2 : elle est croissante ;

� si u0 = 0 ou 2 : elle est constante.

5. (a) La suite (un) est constante, et donc elle converge.

(b) La suite (un) est décroissante, et minorée (par −1 d'après la question 3) donc converge. Par
continuité de f , sa limite est un point �xe de f , donc 0 ou 2. Et par décroissance, sa limite l
est au plus u0, donc l ⩽ u0 < 2. Donc l = 0 : la suite converge vers 0.

(c) On a directement l'inégalité par récurrence :

� initialisation : pour n = 0 : u0 ∈ [−1; 0[ par hypothèse ;

� hérédité : soit n ∈ N. Supposons que un ∈ [−1; 0[. Alors par stricte croissante de f sur
[−1; 0], on a : un+1 = f(un) ∈ [f(−1); f(0)[= [−1/4; 0[⊂ [−1; 0[. D'où l'hérédité.

D'où l'inégalité par récurrence. La suite (un) est donc croissance (par la question 4) majorée (par
0) donc converge vers un point �xe de f (par continuité) qui est au plus 0 (par la majoration).
Donc la suite converge vers 0 (l'autre point �xe étant trop grand).

(d) On a directement l'inégalité par récurrence :

� initialisation : pour n = 0 : u0 > 2 par hypothèse ;

� hérédité : soit n ∈ N. Supposons que un > 2. Alors par stricte croissante de f sur [2; +∞[,
on a : un+1 = f(un) > f(2) = 2. D'où l'hérédité.
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D'où l'inégalité par récurrence.

La suite (un) est donc croissance (par la question 4) donc elle a une limite l (�nie ou non) qui
véri�e l ⩾ u0 > 2 (par la monotonie). Mais, par continuité de f , si l était �nie, ce serait un
point �xe de f . Comme f ne possède pas de point �xe strictement plus grand que 2, ce cas est
exclu. Donc l = +∞ : la suite (un) diverge en tendant vers +∞.

Exercice 4

Pour n ∈ N∗, on dé�nit la fonction fn par fn : x 7→ xnln(x).

1. La fonction fn est dé�nie sur R∗
+ à cause du ln qui apparaît dans son expression.

2. Notons déjà que, si x ∈]0; 1], on a : ln(x) ⩽ 0 et xn > 0. Par produit, il vient : fn(x) ⩽ 0, et donc
fn(x) ̸= 1.

L'équation fn(x) = 1 n'a donc pas de solution sur ]0; 1].

Sur [1; +∞[, la fonction fn est continue (en tant que produit de fonctions continues), et même
dérivable (en tant que produit de fonctions dérivables). Sa dérivée est donnée par :

∀x ∈ [1; +∞[, f ′
n(x) = nxn−1ln(x) + xn · 1

x
= xn−1 · (nln(x) + 1) > 0

donc fn est strictement croissante sur [1; +∞[.

On a fn(1) = 0, et par limite d'un produit lim
x→+∞

fn(x) = +∞.

Par théorème de la bijection continue, la fonction fn réalise une bijection strictement croissante de
[1; +∞[ dans [0; +∞[.

Et donc l'équation fn(x) = 1 admet une unique solution dans [1; +∞[.

Comme fn(1) = 0, on a même xn ∈]1; +∞, c'est-à-dire xn > 1.

3. Par croissance de la fonction fn, pour montrer que (xn) est strictement décroissante, il su�t de
montrer que : ∀n ∈ N∗, fn(xn+1) < fn(xn).

Mais on a pour tout n ∈ N∗ :

fn(xn+1) = xn
n+1ln(xn+1) =

xn+1
n+1ln(xn+1)

xn+1

=
fn+1(xn+1)

xn+1

=
1

xn+1

< 1 = fn(xn)

en utilisant que fn(xn) = fn+1(xn+1) = 1, et que xn+1 > 1.

Ce qui prouve bien le résultat voulu.

Donc (xn) est strictement décroissante.

4. En tant que suite décroissante minorée (par 1), la suite (xn) est donc convergente. Sa limite ℓ véri�e
ℓ ∈ [1; +∞[.

5. Supposons par l'absurde que ℓ ̸= 1. Comme on a déjà que ℓ ∈ [1; +∞[, on a donc : l > 1.

Par décroissance de la suite (xn), on a :

∀n ∈ N, xn ⩾ l

et donc : fn(xn) = xn
nln(x) ⩾ ℓnln(ℓ).

Comme l > 1, on a : lim
n→+∞

ln = +∞ et ln(l) > 0, donc lim
n→+∞

lnln(l) = +∞.

Par encadrement, il vient : lim
n→+∞

fn(xn) = +∞.
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Mais la suite (fn(xn)) est constante de valeur 1.

D'où la contradiction.

Donc ℓ = 1.

Remarque : au lieu de faire une minoration, on pouvait aussi voir par calcul direct que lim
n→+∞

fn(xn) =

+∞ (le fait que ℓ > 1 assure qu'il n'y a pas de forme indéterminée).

II Problème

II.1 Structure de E

1. On utilise directement les expressions de M(0, 1) et M(1, 0). On a :

A =

 3 −2 2
−1 4 −2
0 4 −1

 et B =

 0 2 −1
−1 −3 1
−2 −4 1

 .

2. Montrons directement que E = Vect(A,B), ce qui prouvera les deux parties de la questions.

On a par dé�nition pour tout x, y ∈ R :

M(x, y) =

 3x −2x+ 2y 2x− y
−x− y 4x− 3y −2x+ y
−2y 4x− 4y −x+ y

 = x ·

 3 −2 2
−1 4 −2
0 4 −1

+y ·

 0 2 −1
−1 −3 1
−2 −4 1

 = xA+yB

ce qui assure que :

E = {M(x, y) |x, y ∈ R} = {xA+ yB |x, y ∈ R} = Vect(A,B).

3. Les matrices A et B ne sont pas proportionnelles (on peut voir qu'elles des 0 en des coordonnées
di�érentes) : en tant que famille à deux vecteurs, cela assure que la famille (A,B) est libre.

4. On déduit que la famille (A,B) engendre E et est libre : c'est une base de E.

Si x, y ∈ R, on a vu que M(x, y) = xA+ yB : ainsi les coordonnées de M(x, y) dans la base (A,B)
sont (x, y).

5. (a) Raisonnons dans la base (A,B). Pour λ, µ, x, y ∈ R, on a :

λM(a, b) + µM(c, d) = (λa+ µc)A+ (λb+ µd)B et M(x, y) = xA+ yB

et par unicité de l'écriture (comme (A,B) est libre) :

λM(a, b) + µM(c, d) = M(x, y) ⇔
{

λa+ µc = x
λb+ µd = y

⇔
(
a c
b d

)(
λ
µ

)
=

(
x
y

)
ce qui donne bien l'équivalence demandée.

(b) Par dé�nition, la famille (M(a, b),M(c, d)) est une base de E si, et seulement si, tout élément
de E s'écrit de manière unique comme combinaison linéaire de M(a, b) et M(c, d). Cela veut
dire que, pour tous x, y ∈ R, l'équation (d'inconnues λ, µ ∈ R) λM(a, b) + µM(c, d) = M(x, y)
admet une unique solution.

Par la question précédente, c'est équivalent au fait que l'équation

(
a c
b d

)(
λ
µ

)
=

(
x
y

)
possède

une unique solution.
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Or, c'est le cas si, et seulement si, la matrice

(
a c
b d

)
est inversible.

Et �nalement la famille (M(a, b),M(c, d)) est une base si, et seulement si, la matrice

(
a c
b d

)
est inversible. Et c'est le cas si, et seulement si : ad − bc ̸= 0 (condition pour qu'un système
linéaire 2× 2 admette une unique solution).

II.2 Réduction des éléments de E

6. On échelonne P . On trouve que P est bien inversible avec P−1 =

1 2 −1
1 1 0
2 0 1

.

7. Un calcul direct donne :

DA =

1 0 0
0 2 0
0 0 3

 et DB =

0 0 0
0 −1 0
0 0 −1

 .

8. Soient x, y ∈ R. Posons D(x, y) = P−1M(x, y)P . Il su�t de montrer que D(x, y) ainsi dé�nie est
diagonale.

Or, on a : M(x, y) = xA+yB. Par bilinéarité de la multiplication matricielle (distributivité à gauche
et à droite) :

D(x, y) = P−1 (xA+ yB)P =
(
xP−1AP

)
+
(
yP−1BP

)
= xDA + yDB =

x 0 0
0 2x− y 0
0 0 3x− y



et donc D(x, y) =

x 0 0
0 2x− y 0
0 0 3x− y

 convient, et est bien diagonale.

9. Comme P et P−1 sont inversible, la matrice M(x, y) = PD(x, y)P−1 est inversible si, et seulement
si, D(x, y) est inversible.

Or, en tant que matrice diagonale, D(x, y) est inversible si, et seulement si, tous ses coe�cients
diagonaux sont non nuls. Donc M(x, y) est inversible si, et seulement si :

x ̸= 0, y ̸= 2x et y ̸= 3x.

Par inverse d'une matrice diagonale, sous ces conditions, on a :

D(x, y)−1 =


1

x
0 0

0
1

2x− y
0

0 0
1

3x− y

 .

Par inverse d'un produit, pour de tels x, y :

M(x, y)−1 =
(
PD(x, y)P−1

)−1
= (P−1)−1D(x, y)−1P−1 = PD(x, y)−1P−1.

Au passage, on trouve bien que A est inversible, cohérent avec le fait que DA est inversible, et que
B n'est pas inversible, cohérent avec le fait que DB ne l'est pas non plus.
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10. (a) Par dé�nition de DB :

B2 = (PDBP
−1)2 = PD2

BP
−1 = P

0 0 0
0 1 0
0 0 1

P−1 = PD(0,−1)P−1 = M(0,−1)

et donc B2 ∈ E (et même on vient de montrer que B2 = −B, qui est donc dans E comme c'est
un espace vectoriel).

(b) De même avec DA :

A2 = (PDAP
−1)2 = PD2

AP
−1 = P

1 0 0
0 4 0
0 0 9

P−1

et, pour montrer que ce n'est pas un élément de E, il su�t de voir que

1 0 0
0 4 0
0 0 9

 n'est pas de

la forme D(x, y). Pour cela, on résout l'équation

1 0 0
0 4 0
0 0 9

 = D(x, y) (d'inconnues x, y). On

a : 1 0 0
0 4 0
0 0 9

 = D(x, y) ⇔


1 = x
4 = 2x− y
9 = 3x− y

⇔


x = 1
y = −2
y = −6

qui n'a pas de solution.
Et ainsi : A2 /∈ E.

(c) Les matrices DA et DB sont diagonales, donc commutent. On déduit que :

AB = PDAP
−1PDBP

−1 = PDADBP
−1 = PDBDAP

−1 = PDBP
−1PDAP

−1 = BA.

donc A et B commutent.

II.3 Application à l'étude de suites

11. On a par dé�nition :

X0 =

a0
b0
c0

 =

1
0
0

 .

De plus, par relation de récurrence satisfaite par les suites :

a1 = 3a0 + 4b0 − c0 = 3, b1 = −4a0 − 5b0 + c0 = −4 et c1 = −6a0 − 8b0 + 2c0 = −6

et donc :

X1 =

 3
−4
−6

 .

12. Par dé�nition, on a pour tout x ∈ N :

Xn+1 =

 3an + 4bn − cn
−4an − 5bn + cn
−6an − 8bn + 2cn

 =

 3 4 −1
−4 −5 1
−6 −8 2

 ·

an
bn
cn

 = CXn

où C =

 3 4 −1
−4 −5 1
−6 −8 2

 = M(1, 3) ∈ E (donc x = 1 et y3 conviennent).

8



13. On procède par récurrence :

� pour n = 0 : par dé�nition, C0 = I3, et on a bien X0 = I3X0 ;

� hérédité : soit n ∈ N tel que Xn = CnX0. Alors :

Xn+1 = CXn = C · CnX0 = Cn+1X0

ce qui prouve l'hérédité.

D'où le résultat par récurrence.

14. Par calcul direct, on a :

C2 =

−1 0 −1
2 1 1
2 0 2

 .

15. On a :
C = M(1, 3) = PD(1, 3)P−1

et en passant à la puissance n, pour n ∈ N, les facteurs P−1P du produit matriciels disparaissent,
ce qui donne :

Cn = PD(1, 3)nP−1.

Mais, d'après l'expression deD(x, y), on a : D(1, 3) =

1 0 0
0 −1 0
0 0 0

 et doncD(1, 3)n =

1 0 0
0 (−1)n 0
0 0 0

.

En réinjectant, il vient pour tout n ∈ N∗ :

Cn =

{
C si n impair
C2 si n pair

=

 1− 2 · (−1)n 2− 2 · (−1)n −1
−1 + 3 · (−1)n −2 + 3 · (−1)n 1
−2 + 4 · (−1)n −4 + 4 · (−1)n 2


Et par la question précédente :an

bn
cn

 = Xn = Cn

1
0
0

 =

 1− 2 · (−1)n

−1 + 3 · (−1)n

−2 + 4 · (−1)n


et donc pour tout n ∈ N∗ :

an = 1− 2 · (−1)n, bn = −1 + 3 · (−1)n, cn = −2 + 4 · (−1)n.

les formules n'étant pas valables pour n = 0 (au même titre que l'expression précédente de Cn pour
n = 0).

II.4 Application à l'étude d'un système d'équations di�érentielles

Remarque : petit cadeau à cette question comme on donne en fait l'expression de P−1 dans l'énoncé.

16. Soient f1, f2, f3 constantes de valeurs respectives x, y, z ∈ R. Alors elles sont solution du système
(S) si, et seulement si : 

0 = 3x+ 2y
0 = −3x− 2y
0 = −4x− 4y + z

c'est-à-dire si, et seulement si (par pivot par exemple) : x = −z/2 et y = 3z/4.
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Et donc les solutions forment l'ensemble {(−z/2, 3z/4, z) | z ∈ R} = Vect((−1/2, 3/4, 1)) = Vect((−2, 3, 4)).

Et �nalement, les solutions constantes sont les fonctions de la forme :

f1 : x 7→ −2λ, f2 : x 7→ 3λ, f3 : x 7→ 4λ

pour λ ∈ R.

17. On montre séparément les deux implications :

� si les fi sont dérivables : chacune des fonctions g1, g2, g3 est combinaison linéaire des fonctions
f1, f2, f3, qui sont dérivables ; par linéarité de la dérivation, les fonctions gi sont bien dérivables
;

� si les gi sont dérivables : on a

g1
g2
g3

 = P−1

f1
f2
f3

 et donc

f1
f2
f3

 = P

g1
g2
g3

, c'est-à-dire que :

∀x ∈ R,


f1(x) = g1(x)− 2g2(x) + g3(x)
f2(x) = −g1(x) + 3g2(x)− g3(x)
f3(x) = −2g1(x) + 4g2(x)− g3(x)

.

Et donc les fi sont chacune combinaison linéaire en les fi : à nouveau par linéarité, les fi sont
dérivables.

On a donc bien l'équivalence demandée.

18. Écrivons tout matriciellement. Notons déjà que, par la question précédente, comme les fonctions
f1, f2, f3 sont dérivables si, et seulement si, les fonctions g1, g2, g3 le sont, il su�t de considérer
f1, f2, f3, g1, g2, g3 dérivables telles que G = P−1F .

On reconnaît l'écriture matricielle pour (S) : F ′ = M(1, 2) · F . Et ainsi :

F solution de (S) ⇔ F ′ = M(1, 2)F ⇔ P−1F ′ = P−1M(1, 2)PP−1F ⇔ G′ = D(1, 2)G

où l'équivalence au milieu vient de l'inversibilité de P et de P−1 (donc multiplier, à gauche ou à
droite, par l'une des deux préserve l'équivalence).

La dernière équation matricielle s'écrit :g′1
g′2
g′3

 =

1 0 0
0 0 0
0 0 1

g1
g2
g3

 =

g1
0
g3


qui est bien de la forme voulue, avec α = γ = 1 et β = 0.

19. On résout séparément chaque équation de (S ′). On a à chaque fois une équation di�érentielle linéaire
homogène du premier degré à coe�cients constants. On trouve que (g1, g2, g3) est solution de (S ′) si,
et seulement si, il existe des réels λ, µ, ν (unique, déterminés entièrement par les conditions initiales,
comme on le verra après) tels que :

g1 : x 7→ λex, g2 : x 7→ µ et g3 : x 7→ νex.

Comme F = PG, on déduit que (f1, f2, f3) est solution de (S) si, et seulement si, il existe λ, µ, ν ∈ R
tels que : 

f1 : x 7→ g1(x)− 2g2(x) + g3(x) = (λ+ ν)ex − 2µ
f2 : x 7→ −g1(x) + 3g2(x)− g3(x) = (−λ− ν)ex + 3µ
f3 : x 7→ −2g1(x) + 4g2(x)− g3(x) = (−2λ− ν)ex + 4µ
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20. Des solutions de (S) véri�ent cette condition initiale si, et seulement si, les réels λ, µ, ν correspondants
véri�ent : a

b
c

 =

f1(x0)
f2(x0)
f3(x0)

 =

 (λ+ ν)ex0 − 2µ
(−λ− ν)ex0 + 3µ
(−2λ− ν)ex0 + 4µ

 = P ·

λex0

µ
νex0


et par inversibilité de P , on trouve directement que le système est équivalent à :λex0

µ
νex0

 = P−1

a
b
c

 =

a′

b′

c′


d'où l'unicité de λ, µ, ν, car l'unique solution avec condition initiale est donnée par :

λ = a′e−x0 , µ = b′ et ν = c′e−x0 .

21. D'après la question 19, on a directement que les solutions de (S) forment l'ensemble F suivant :

F =

x 7→

 (λ+ ν)ex − 2µ
(−λ− ν)ex + 3µ
(−2λ− ν)ex + 4µ

 |λ, µ, ν ∈ R

 = Vect(F1, F2, F3)

où :

F1 : x 7→

 ex

−ex

−2ex

 , F2 : x 7→

−2
3
4

 et F3 : x 7→

 ex

−ex

−2ex


Cette écriture assure que F est un espace vectoriel, et qu'il est engendré par la famille (F1, F2, F3).

L'unicité prouvée à la question précédente assure que la famille (F1, F2, F3) est libre.

Et ainsi : F est un espace vectoriel, et (F1, F2, F3) en est une base.

Remarque : on trouve au passage que l'ensemble des solutions constantes trouvé en question 16
est Vect(F2), qui est un sev de F (c'est même une droite vectorielle).
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