PCSI2 Lycée Champollion 20252026

DS n°7

I Exercices
Exercice 1
1. Soient A\, u, v € R tels que Aln + psin + vexp = 0, c¢’est-a-dire :
Vo € R, Aln(z) + psin(x) 4 vexp(z) = 0.

On pourrait évaluer en trois points (par exemple, 7, 37 puis 7/2) : les deux premiéres valeurs
donnent un systéme homogéne inversible en A\ et v, qui sont donc nuls, et en évaluant en 7/2 on
trouve u = 0 ce qui prouve que la famille est libre.

On on fait tendre x vers 0 (ce qui donne A\ = 0) puis en +oo (ce qui donne v = 0) et on évalue en
/2 (ce qui donne p = 0).

Dans les deux cas, on prouve bien que la famille est libre.

2. On résout le systéme (qui n’a qu’une équation). On a :

r+y+z+t=0r=—y—2—1t

—1 -1 —1
. 1 0 0
et ainsi F' = Vect ol 111 o
0 0 1
—1 —1 —1
. . . 1 0 0
Ce ci assure que F' est un espace vectoriel, et que la famille ol:l11:1o en est une
0 0 1
famille génératrice.
Reste a montrer qu’elle est libre : soient A\, u, v € R tels que :
-1 —1 -1
1 0 0
A 0 St R B 0| = 0.
0 0 1

Alors, en regardant les trois derniéres coordonnées : A = p = v = 0. Donc la famille est libre.

3. La suite nulle tend vers 0, donc c¢’est un élément de G.

Soient (uy), (v,) € G et A\, u € R. Alors par opération sur les limites, la suite (Au,, + uv,) tend vers
A0+ p-0=0. Donc est un élément de G.

Par caractérisation des sous-espaces vectoriels : GG est un espace vectoriel, en tant que sous espace
vectoriel de RY.

4. Montrons que c¢’est un espace vectoriel si, et seulement si, @ = 0 (le choix de b n’a pas d’importance)

e si c’est un espace vectoriel : il contient la fonction nulle, donc nécessairement a = 0 ;



e réciproquement, si @ = 0 : il contient la fonction nulle. Et pour f,g € Hyp et \,pn € R, on a :

(A + ug)(b) = Af(b) + pg(b) =0

donc A\f + pg € Hoy.
Et par caractérisation, c’est bien un espace vectoriel.

D’ou I’équivalence.

Exercice 2

1. Par définition, on a déja que F' est un sev de E : c’est le sev engendré par uy.
Pour G :
e avecr=y=z=t=0,onabienz+y=0=z+1, donc (0,0,0,0) € G ;

e soient u,v € G et A\, u € R. Notons u = (z1,y1, 21, t1) et v—(x2, Yo, 22, t2). Posons w = Au + pv.
Alors : w = (Axy + pwo, A1 + pya, Az1 + pze, Aty + pte). Mais on a, comme u,v € G :

(Azy4pae)+(Ayr+py2) = Mo1+y1) Fu(zetye) = Atr+z1)+p(tat22) = (Az1+pze)+ (M1 +puts)
ce qui prouve que w € G.

Et finalement G est bien un sev de F.
Pour les bases :
e par définition, la famille (uy) engendre F, et elle est libre (constituée d’un vecteur non nul)
donc c’est une base de F';
e pour x,y,z,t € R, on a par définition de G :
(r,y,2,t) eGE o =—y+ 2+t
—1
1

1 1
et ainsi la famille K ? , 8 engendre G. Et elle est libre (car famille graduée,
0 1

0
ou on peut poser le systéme si on préfére) donc c¢’est une base de G.

2. Pour montrer que F' et G sont en somme directe, il suffit de montrer que F' NG = {0} (et méme
seulement ' NG C {0}). Soit u € FNG. Alors :

e comme u € F' = Vect(ug), il existe A € R tel que : u = Aug = (A, \,0,0) ;
e comme u € G : 2A=0donc A =0
et finalement v = 0 : les espaces F' et G sont bien en somme directe.
3. Avec les mémes notations, pour tout A € R on a :
u—Aug = (x— A\ y— A z,1t)
et donc :

r+y—2z—1t

u—dpeEGESr—At+y—A=z+t& A= 5

ce qui montre bien I'existence et 'unicité d’un tel .
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4. Comme on a déja montré que F' et G sont en somme directe, il reste a prouver que F = F + G (et
méme seulement £ C F + G).

Soit u € E. Notons A € R tel que u — Aug € G. Alors :

U= \Nug +u—Aug € F+G
-~ ——

cer eG

Et finalement : F = F @& G, c’est-a-dire que les espaces F' et GG sont supplémentaires.

1+3-5—-7
5. D’apreés la question 3, on a A = % = —4.
Et la décomposition est : (1,3,5,7) = (—4,—4,0,0)+ (5,7,5,7).
—dugeF G

Exercice 3 On considére la suite (u,) définie par :

2

2up
up € [—1;+oo[ et Vn € N, wyyg = W
x? + 2

et on pose pour tout I'exercice f : x — 1

1. La fonction f est une fonction polynomiale du second degré de coefficient dominant 1/4 > 0 et de
racines —2 et 0, d’ou les variations :

f(x) \ /

Et f — id est aussi polynomiale du second degré de coefficient dominant 1/4 > 0 et de racines 0 et
2, ce qui donne le tableau de signe :




4 1
3 1
9 y=ux
¢
1 1
3 1 2 3
_1 |
9.

3. On pourrait procéder par récurrence. On procéde par disjonction de cas :

sin=0:u, =uy > —1 par hypothése ;

sin>0: u,= f(u,—1) € f(R) = [—1/4;400[C [—1; +oo] d’aprés les variations de f.

4. La suite (u,) est a valeurs dans [—1;+oo[ et f est (strictement) croissante sur [—1; +oo[. Donc la
suite (u,,) est monotone. Sa monotonie est donnée par le signe de u; — ug = (f —id) (up), et ainsi :

si ug < 0 : elle est croissante ;
si ug €]0;2[ : elle est décroissante ;
si ug > 2 : elle est croissante ;

si ug = 0 ou 2 : elle est constante.

La suite (u,) est constante, et donc elle converge.

La suite (u,) est décroissante, et minorée (par —1 d’aprés la question 3) donc converge. Par
continuité de f, sa limite est un point fixe de f, donc 0 ou 2. Et par décroissance, sa limite [
est au plus ug, donc [ < ug < 2. Donc [ =0 : la suite converge vers 0.

On a directement l’'inégalité par récurrence :
e initialisation : pour n =0 : ug € [—1; 0] par hypotheése ;
e hérédité : soit n € N. Supposons que u, € [—1;0[. Alors par stricte croissante de f sur
[—1;0], on a : u,p1 = f(un) € [f(—1); f(0)[=[-1/4;0[C [-1;0[. D’ou I'hérédité.

D’ou 'inégalité par récurrence. La suite (u,) est donc croissance (par la question 4) majorée (par
0) donc converge vers un point fixe de f (par continuité) qui est au plus 0 (par la majoration).
Donc la suite converge vers 0 (Pautre point fixe étant trop grand).

On a directement l’'inégalité par récurrence :
e initialisation : pour n = 0 : uy > 2 par hypothése ;

e hérédité : soit n € N. Supposons que u,, > 2. Alors par stricte croissante de f sur [2; +o00],
on a: Upy = f(u,) > f(2) =2. D’ou I’hérédité.



D’ou l'inégalité par récurrence.

La suite (u,,) est donc croissance (par la question 4) donc elle a une limite [ (finie ou non) qui
vérifie | > ug > 2 (par la monotonie). Mais, par continuité de f, si [ était finie, ce serait un
point fixe de f. Comme f ne posséde pas de point fixe strictement plus grand que 2, ce cas est
exclu. Donc [ = +o0 : la suite (u,,) diverge en tendant vers +oo.

Exercice 4
Pour n € N*, on définit la fonction f, par f, :  — 2"In(x).

1. La fonction f,, est définie sur R% a cause du In qui apparait dans son expression.

2. Notons déja que, si x €]0;1], on a : In(z) < 0 et 2 > 0. Par produit, il vient : f,(z) < 0, et donc
fn(z) # 1.
L’équation f,(z) =1 n’a donc pas de solution sur ]0; 1.

Sur [1;+o0o[, la fonction f, est continue (en tant que produit de fonctions continues), et méme
dérivable (en tant que produit de fonctions dérivables). Sa dérivée est donnée par :

1
=2""" (nln(z) +1) >0

Vo € [1;400, fi(z) =na" 'In(z) + 2" =
x

n

donc f, est strictement croissante sur [1; +o00].

On a f,(1) =0, et par limite d'un produit lim f,(z) = +oc.

r—r+00
Par théoréme de la bijection continue, la fonction f, réalise une bijection strictement croissante de
[1; +00[ dans [0; 400

Et donc 'équation f,(z) = 1 admet une unique solution dans [1; +o0].
Comme f,(1) =0, on a méme x,, €|1; 400, ¢’est-a-dire x, > 1.

3. Par croissance de la fonction f,, pour montrer que (x,) est strictement décroissante, il suffit de
montrer que : Vn € N*| f,(zp41) < fu(z,).

Mais on a pour tout n € N* :

xﬁihn<xn+1) _ fn+1($n+1> _ 1 <1= f (33 )
Tn+1 Tn+1 Ln+1 e

Jn(@ny1) = $Z+1ln(9€n+1) =

en utilisant que f,(z,) = for1(Tas1) = 1, et que z,41 > 1.
Ce qui prouve bien le résultat voulu.
Donc (z,,) est strictement décroissante.
4. En tant que suite décroissante minorée (par 1), la suite (z,,) est donc convergente. Sa limite ¢ vérifie
¢ € [1; 400l
5. Supposons par 'absurde que ¢ # 1. Comme on a déja que ¢ € [1;+oo|, on a donc : [ > 1.

Par décroissance de la suite (z,), on a :
VneN, z, >1

et donc : f,(z,) = 2l1n(x) > "n(?).

Comme [ > 1,ona: lim ["=4o0 et In(l) >0, donc lim {"In(l) = +oo.

n—-+o0o n—-+o0o

Par encadrement, il vient : lim f,(z,) = +oc.
n——+00



IT

Mais la suite (f,(z,)) est constante de valeur 1.

D’ou la contradiction.

Donc ¢ = 1.

Remarque : au lieu de faire une minoration, on pouvait aussi voir par calcul direct que lim f,(x,) =

n—-+o0o
+0o (le fait que £ > 1 assure qu’il n’y a pas de forme indéterminée).

Probléme

II.1 Structure de F

1.

d.

On utilise directement les expressions de M (0,1) et M(1,0). On a :

3 =2 2 0o 2 -1
A=|-1 4 2| etB=|-1 -3 1
0 4 -1 -2 —4 1

Montrons directement que E = Vect(A, B), ce qui prouvera les deux parties de la questions.

On a par définition pour tout x,y € R :

3x —2x+2y 2z—vy 3 =2 2 0o 2 -1
M(z,y)=|-2—-y 4o-3y —22o+4+y|=z-[-1 4 -2|4+y-|-1 -3 1 |=zA+yB
—2y dr —4dy —x+vy 0 4 -1 -2 —4 1

ce qui assure que :

E={M(z,y)|z,y € R} ={zA+yB|z,y € R} = Vect(A4, B).

Les matrices A et B ne sont pas proportionnelles (on peut voir qu’elles des 0 en des coordonnées
différentes) : en tant que famille & deux vecteurs, cela assure que la famille (A, B) est libre.

On déduit que la famille (A, B) engendre E et est libre : c’est une base de E.
Siz,y € R, on a vu que M(z,y) = xA+ yB : ainsi les coordonnées de M(z,y) dans la base (A, B)
sont (z,y).
(a) Raisonnons dans la base (A, B). Pour A\, u,z,y € R, on a :
AM (a,b) + puM(c,d) = (Aa+ pc)A+ (Ab+ pd)B et M(z,y) =xA+yB

et par unicité de I'écriture (comme (A, B) est libre) :

AM (a,b) + pM (¢, d) = M(z,y) @{ iZiﬁ; _ ; <~ (Z ccl) (2) B <§>

ce qui donne bien ’équivalence demandée.

(b) Par définition, la famille (M (a,b), M(c,d)) est une base de E si, et seulement si, tout élément
de E s’écrit de maniére unique comme combinaison linéaire de M(a,b) et M(c,d). Cela veut
dire que, pour tous z,y € R, I'équation (d’inconnues A\, u € R) AM (a,b) + pM(c,d) = M(x,y)
admet une unique solution.

Par la question précédente, c’est équivalent au fait que I’équation (Z 2) <)\) = (;) posséde

14
une unique solution.



Or, c’est le cas si, et seulement si, la matrice ( ) est inversible.

a c
b d
Et finalement la famille (M (a,b), M(c,d)) est une base si, et seulement si, la matrice (Z 2)

est inversible. Et c’est le cas si, et seulement si : ad — bc # 0 (condition pour qu’un systéme
linéaire 2 x 2 admette une unique solution).

I1.2 Réduction des éléments de F

1 2
6. On échelonne P. On trouve que P est bien inversible avec P! =1 1 0
2 0

7. Un calcul direct donne :

1 00 0 0 0
Dy={0 2 0] etDp=|(0 -1 0
0 0 3 0 0 -1

8. Soient z,y € R. Posons D(z,y) = P~*M(x,y)P. 1l suffit de montrer que D(z,y) ainsi définie est
diagonale.

Or,ona: M(z,y) = xA+yB. Par bilinéarité de la multiplication matricielle (distributivité a gauche
et a droite) :

T 0 0
D(z,y) = P"' (xA+yB)P = (xP7'AP) + (yP"'BP) =2Ds+yDp= |0 20—y 0
0 0 3r —y

x 0 0
et donc D(z,y) = (0 22—y 0 convient, et est bien diagonale.
0 0 3x —y

9. Comme P et P~! sont inversible, la matrice M (x,y) = PD(z,y)P~" est inversible si, et seulement
si, D(x,y) est inversible.

Or, en tant que matrice diagonale, D(x,y) est inversible si, et seulement si, tous ses coefficients
diagonaux sont non nuls. Donc M (z,y) est inversible si, et seulement si :

x#0, y#2xety# 3.
Par inverse d’une matrice diagonale, sous ces conditions, on a :
1

1
20 —y

z
D(z,y)"'=|0

= o O

0
3r—y

Par inverse d’un produit, pour de tels x,y :

1

M(z,y)"" = (PD(z,y)P™")" = (P ") 'D(z,y)'P~" = PD(z,y)'P".

Au passage, on trouve bien que A est inversible, cohérent avec le fait que D4 est inversible, et que
B n’est pas inversible, cohérent avec le fait que Dpg ne ’est pas non plus.
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10. (a) Par définition de Dp :

000
B*= (PDgP ') =PD3P*'=P|0 1 0| P'=PD(0,-1)P ' =M(0,-1)
0 01
et donc B? € E (et méme on vient de montrer que B> = —B, qui est donc dans E comme ¢’est,

un espace vectoriel).

(b) De méme avec Dy :

1 00
A? = (PD,P Y =PD3P'=P[0 4 0] P!
009
1 00
et, pour montrer que ce n’est pas un élément de F, il suffit de voir que | 0 4 0 | n’est pas de
009
100
la forme D(x,y). Pour cela, on résout I’équation [0 4 0| = D(z,y) (d’inconnues z,y). On
009
1 00 1 = =z r = 1
04 0]=Dx,ye 4 =20-—y &y = —2
009 9 = 3xr—y y = —6

qui n’a pas de solution.
Et ainsi : A% ¢ F.
(c) Les matrices Dy et Dp sont diagonales, donc commutent. On déduit que :

AB = PDoP 'PDgP ' = PD4DgP ' = PDgD,P' = PDyP 'PD,P~' = BA.

donc A et B commutent.

I1.3 Application & ’étude de suites
11. On a par définition :

Qo 1
Xo=|bo] =10
Co 0

De plus, par relation de récurrence satisfaite par les suites :

a1:3a0+4b0—00:3, b1:—4a0—5b0+00:—4et 01:—6a0—8b0+200=—6

et donc :
3
Xi=\|-4
—6
12. Par définition, on a pour tout z € N :
3a, + 4b,, — ¢, 3 4 -1 an,
Xpm1=| —4a,—5b,+c, | =|—-4 -5 1 |-|b,| =CX,
—6a,, — 8b,, + 2¢, -6 —8 2 Ch,
3 4 -1
ouC=|-4 =5 1 | =M(1,3)€ E (donc x =1 et y3 conviennent).
—6 -8 2



13. On procéde par récurrence :

e pour n = 0 : par définition, C° = I3, et on a bien X, = [3X ;

e hérédité : soit n € N tel que X,, = C"X,. Alors :
Xp1 =CX,=C -C"X,=C""X,
ce qui prouve I’hérédité.
D’ou le résultat par récurrence.

14. Par calcul direct, on a :

c? =

N DN
o = O
—_

15. On a :
C=M(1,3)= PD(1,3)P*

et en passant a la puissance n, pour n € N, les facteurs P~'P du produit matriciels disparaissent,

ce qui donne :

C" = PD(1,3)"P".
0 0

1
Mais, d’aprés 'expression de D(z,y),ona: D(1,3) = [0 —1 0| etdonc D(1,3)" =
0

0 O

En réinjectant, il vient pour tout n € N* :

C  si  n impair L=2-(=1)"  2=2-(=1)" 1
P 244 (1) 444 (=1 2
Et par la question précédente :
ap 1 1—2-(=1)"
by | =X, =C" 0| =|-1+3-(=1)"
Cn 0 —2+4-(=1)"

et donc pour tout n € N* :

U =1—=2-(=1)", by=—=1+3-(=1)", ¢, = —2+4- (1)~

les formules n’étant pas valables pour n = 0 (au méme titre que I’expression précédente de C™ pour

n =0).

I1.4 Application a I’étude d’un systéme d’équations différentielles

Remarque : petit cadeau & cette question comme on donne en fait 'expression de P~! dans 1’énoncé.

16. Soient fi, fo, f3 constantes de valeurs respectives x,y,z € R. Alors elles sont solution du systéme

(S) si, et seulement si :

0 = 3+ 2y
0 = —3x—2y
0 = —dr—4y—+=z
c’est-a-dire si, et seulement si (par pivot par exemple) : x = —z/2 et y = 3z/4.
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17.

18.

19.

Et donc les solutions forment ’ensemble {(—z/2,3z/4, 2) | z € R} = Vect((—1/2,3/4,1)) = Vect((—2,3,4)

Et finalement, les solutions constantes sont les fonctions de la forme :
fiix—= =2\ fo:x—= 3N f3:x— 4\

pour \ € R.

On montre séparément les deux implications :

e siles f; sont dérivables : chacune des fonctions g¢i, g2, g3 est combinaison linéaire des fonctions
f1, f2, f3, qui sont dérivables ; par linéarité de la dérivation, les fonctions g; sont bien dérivables

Y

9 fi fi 9
e siles g; sont dérivables: ona [ g | = P71 | fo | etdonc | fo| =P | g2 |, c’est-a-dire que :
93 s I3 93

filz) = gi(z) — 2g2(x) + gs(z)
Vx € R, fo(x) = —gi(z) + 3g2(2) — g3(2)
f3() —2g1(7) + 4ga(7) — g3()

Et donc les f; sont chacune combinaison linéaire en les f; : & nouveau par linéarité, les f; sont
dérivables.

On a donc bien I’équivalence demandée.

Ecrivons tout matriciellement. Notons déja que, par la question précédente, comme les fonctions
f1, f2, f3 sont dérivables si, et seulement si, les fonctions g1, ¢o, g3 le sont, il suffit de considérer
f1, f2, f3, 91, g2, g3 dérivables telles que G = P~'F.

On reconnait I’écriture matricielle pour (S) : F' = M(1,2) - F. Et ainsi :
F solution de (S) < F' = M(1,2)F & P 'F' = P"'M(1,2)PP'F & G' = D(1,2)G

ot I'équivalence au milieu vient de l'inversibilité de P et de P~' (donc multiplier, a gauche ou a
droite, par 1'une des deux préserve I’équivalence).

La derniére équation matricielle s’écrit :

9% 1 0 0\ (& 9
gl=1000]lg]=]|0
95 00 1/ \gs g3

qui est bien de la forme voulue, avec a =y =1et g = 0.

On résout séparément chaque équation de (S’). On a a chaque fois une équation différentielle linéaire
homogéne du premier degré a coefficients constants. On trouve que (g1, g2, g3) est solution de (5”) si,
et seulement si, il existe des réels A, p, v (unique, déterminés entiérement par les conditions initiales,
comme on le verra aprés) tels que :

gr:x = A’ go x> et gyix e vet.

Comme F' = PG, on déduit que (f1, fo, f3) est solution de (S) si, et seulement si, il existe A\, u, v € R
tels que :

fii x> gi(z) —2g92(x) + g3(z) = (A +v)e” —2pu

for x> —gqi(z) +3g92(x) — g3(z) = (=X — v)e” + 3pu

fs: x> =2g1(x) +4g2(x) — g3(x) = (—2\ —v)e” + 4pu
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20.

21.

Des solutions de () vérifient cette condition initiale si, et seulement si, les réels A, p1, v correspondants
vérifient :

a f1(xo) (A +rv)e™ —2pu Ae®o
bl=1falxo) | = (-A=v)e®+3u | =P | u
c f3(zo) (—2\ —v)e®™ +4p vevo

et par inversibilité de P, on trouve directement que le systéme est équivalent a :

Ae®o a a’
w =P b=V
vero c c

d’ou l'unicité de A, u, v, car 'unique solution avec condition initiale est donnée par :

A=de ™, p="betv=ce™.

D’aprés la question 19, on a directement que les solutions de (S) forment I’ensemble F suivant :

(A+rv)e” —2u
F=Ra—= | (=A=v)e"+3u | |\ pu,veR ) = Vect(Fy, Fy, F3)
(=2\ —v)e®” +4u

e’ —2 e’
Fi:a— | = |, Fh:x— | 3 et Fy3:x— | —e*
—2e* 4 —2e”

Cette écriture assure que F est un espace vectoriel, et qu’il est engendré par la famille (Fy, Fy, F3).
L’unicité prouvée a la question précédente assure que la famille (Fy, Fy, F3) est libre.
Et ainsi : F est un espace vectoriel, et (F, Iy, F3) en est une base.

Remarque : on trouve au passage que ’ensemble des solutions constantes trouvé en question 16
est Vect(Fy), qui est un sev de F (c’est méme une droite vectorielle).
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