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DS no6

I Limites, équivalents et suites

Exercice 1 1. en 0 :

(a)
x2ex

ln(1 + x)cos(x)
∼

x→0

x2

x
= x →

x→0
0

(b)
e2x − 1

ln(1− x2)
∼

x→0

2x

−x2
=

−2

x
qui n'a pas de limite en 0

(c) (4x3 − 5x2 + x)ecos(x) ∼
x→0

e · x →
x→0

0

(d) (ex − 1)sin(x) + tan(x)cos(x) ∼
x→0

x →
x→0

0

(e)
ln(1 + x)− ex

cos(x)− 1
∼

x→0

−1

−x2/2
=

2

x2
→
x→0

+∞ (pas de problème de signe cette fois-ci) ;

2. en 3 :

(a) cos(3x)e2x
3 ∼

x→3
cos(9)e54 →

x→3
cos(9)e54 (limite �nie non nulle)

(b) ln(x)− ln(4) ∼
x→3

ln(3)− ln(4) →
x→3

ln(3)− ln(4) (limite �nie non nulle)

(c) ln(x)− ln(3) = ln
(x
3

)
∼

x→3

x− 3

3
→
x→3

0

(d) ln(1 + x)− 2ln(2) = ln

(
1 + x

4

)
∼

x→3

x− 3

4
→
x→3

0

(e)
√
x2 − 8 ·

√
x3 − 4 · (ex − e3) ∼

x→3

√
23 · e3(x− 3) →

x→3
0

3. en +∞ :

(a)
ch(x)

xex
∼

x→+∞

ex/2

xex
=

1

2x
→

x→+∞
0

(b)
ex − x2ln(x) + ln(x)

x2ln(x)− x3 + x2
∼

x→+∞

ex

−x3
→

x→+∞
−∞

(c)
√
x+ 1−

√
x− 1 =

√
x
(√

1 + 1/x−
√

1− 1/x
)

=
x→+∞

√
x

(
1 +

1

2x
− 1 +

1

2x
+ o(1/x)

)
∼

x→+∞
1√
x

→
x→+∞

0

(d)
1

(x+ 1)12
− 1

(x− 1)12
=

1

x12
((1 + 1/x)−12 − (1− 1/x)−12) =

x→+∞

1

x12

(
1− 12

x
− 1− 12

x
+ o(1/x)

)
∼

x→+∞

− 24

x13
→

x→+∞
0

(e) ln(x2 + x+ 1) = ln(x2) + ln(1 + 1/x+ 1/x2) =
x→+∞

2ln(x) + o(1) ∼
x→+∞

2ln(x) →
x→+∞

+∞



Exercice 2 1. ∀n ∈ N, un = 2n+1 + 1 : formule véri�ée pour u1 = 5 = 22 + 1 ;

2. ∀n ∈ N, un = −1 + 3n (suite arithmétique) : formule véri�ée pour u1 = 2 ;

3. ∀n ∈ N, un = 1− (−3)n+1 : formule véri�ée pour u1 = −8 = 1− 9

4. ∀n ∈ N, un = 8 : formule véri�ée pour u1 = 8 = 8.

Exercice 3 1. ∀n ∈ N, un = 1 + 2n+1 : formule véri�ée pour u2 = 9 = 1 + 23

2. ∀n ∈ N, un = (1− n)2n : formule véri�ée pour u2 = −4 = (−1) · 22

3. ∀n ∈ N, un = cos(nπ/3) +
√
3sin(nπ/3) = 2cos((n − 1)π/3) : formule véri�ée pour u2 = 1 =

2cos(π/3).

II Matrices

Exercice 4

1. A1 =

(
1 −1
−1 1

)
: A2

1 =

(
2 −2
−2 2

)
= 2A1.

Par récurrence, on déduit que pour tout n ∈ N∗ : An
1 = 2n−1A1 :

� initialisation : pour n = 1, c'est directement l'expression de A1 (on a même le cas n = 2)

� hérédité : soit n ∈ N∗ tel que An
1 = 2n−1A1. Alors :

An+1
1 = An

1 · A1 = 2n−1A1 · A1 = 2n−1A2
1 = 2n−1 · 2A1 = 2nA1 = 2n+1−1A1

ce qui prouve bien le résultat par récurrence.

Et �nalement :

An
1 =

{
I2 si n = 0

2n−1A1 si n ∈ N∗

Formule cohérente pour n ⩽ 2.

2. A2 =

(
1 1
0 2

)
: A2

2 =

(
1 3
0 4

)
.

On calcule les puissance de A2 par binôme : soit n ∈ N, les matrices I2 (scalaire) et B =

(
0 1
0 1

)
commutent et véri�ent A = I2 + B. Et on a :B2 = B. Et une récurrence immédiate donne :
∀k ∈ N∗, Bk = B. Par formule du binôme :

An
2 = (I2 +B)n =

n∑
k=0

(
n

k

)
Bk = I2︸︷︷︸

k=0

+
n∑

k=1

(
n

k

)
B︸ ︷︷ ︸

k ̸=0

= I2 + (2n − 1)B =

(
1 2n − 1
0 2n

)

où on véri�e la cohérence de la formule pour n ⩽ 2.

3. A3 =

(
0 1
2 0

)
: A2

3 =

(
2 0
0 2

)
= 2I2. On montre par récurrence que pour tout n ∈ N :

An
3 =

{
2n/2I2 si n est pair

2(n−1)/2A3 si n est impair
.

� initialisation : pour n = 0, qui est pair, on a bien A0
3 = I2 = 20/2I2 ;
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� hérédité : soit n ∈ N tel que An
3 =

{
2n/2I2 si n est pair

2(n−1)/2A3 si n est impair
. Alors :

� si n est pair :
An+1

3 = An
3 · A3 = 2n/2I2A3 = 2n/2A3 = 2(n+1−1)/2A3

qui est la formule voulue comme n+ 1 est impair ;

� si n est impair :

An+1
3 = An

3 · A3 = 2(n−1)/2A2
3 = 2(n−1)/2 · 2I2 = 2(n+1)/2I2

qui est la formule voulue comme n+ 1 est pair.

D'où le résultat par récurrence.

Formule cohérente pour n ⩽ 2.

4. A4 =

1 1 0
0 1 1
0 0 1

 : A2
4 =

1 2 1
0 1 2
0 0 1

. On calcule par binôme : si n ∈ N, en posant J =

0 1 0
0 0 1
0 0 0


qui commute avec I3 et véri�e A4 = I3 + J , on a :

An
4 =

n∑
k=0

(
n

k

)
Jk

mais on a : J2 =

0 0 1
0 0 0
0 0 0

 et J3 = 0, ce qui permet d'arrêter la somme à 2 pour n ⩾ 2. Et on a

�nalement :

An
4 =



I3 si n = 0
A4 si n = 1

I3 + nJ +
(
n
2

)
J2 =

1 n
n(n− 1)

2
0 1 n
0 0 1

 si n ⩾ 2
.

Formule cohérente pour n ⩽ 2.

5. A5 =

1 1 1
1 1 1
1 1 1

 : A2
5 =

3 3 3
3 3 3
3 3 3

 = 3A5. On fait comme pour A1 : par récurrence on déduit que

pour tout n ∈ N∗, An
5 = 3n−1A5 :

� initialisation : pour n = 1, c'est directement l'expression de A5 (on a même le cas n = 2)

� hérédité : soit n ∈ N∗ tel que An
5 = 3n−1A5. Alors :

An+1
5 = An

5 · A5 = 3n−1A5 · A5 = 3n−1A2
5 = 3n−1 · 3A5 = 3nA5 = 3n+1−1A5

ce qui prouve bien le résultat par récurrence.

Et �nalement :

An
5 =

{
I2 si n = 0

3n−1A5 si n ∈ N∗

Formule cohérente pour n ⩽ 2.
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6. A6 =

5 1 1
1 5 1
1 1 5

 : A2
6 =

27 11 11
11 27 11
11 11 27

.

Et on retrouve la matrice A5 qui commute avec 4I3 et véri�e A6 = A5 + 4I3, et par binôme pour
tout n ∈ N : An

6 =
∑n

k=0

(
n
k

)
Ak

5 · 4n−k

= 4nI3 +

(
n∑

k=1

(
n

k

)
3k−1 · 4n−k

)
A5 = 4nI3 +

7n − 4n

3
A5 =

1

3

7n + 2 · 4n 7n − 4n 7n − 4n

7n − 4n 7n + 2 · 4n 7n − 4n

7n − 4n 7n − 4n 7n + 2 · 4n


Formule cohérente pour n ⩽ 2.

Exercice 5

1. P1 =

1 1 0
0 1 1
0 0 1

 (inversible en tant que matrice triangulaire dont tous les coe�cients diagonaux

sont non nuls) : P−1
1 =

1 −1 1
0 1 −1
0 0 1

 (et on retrouve la formule de An
4 pour n = −1).

2. P2 =

1 1 2
1 2 1
2 1 1

 : P2 est inversible avec P−1
2 =

1

4

−1 −1 3
−1 3 −1
3 −1 −1

.

3. P3 =

0 1 2
1 1 2
0 2 3

 : P3 est inversible d'inverse : P−1
3 =

−1 1 0
−3 0 2
2 0 −1

.

4. P4 =

1 4 7
2 5 8
3 6 9

 : P4 n'est pas inversible. En échelonnant sur les lignes, on obtient successivement

les étapes : 1 4 7
2 5 8
3 6 9

 1 4 7
0 −3 −6
0 −6 −12

 1 4 7
0 −3 −6
0 0 0


et la dernière matrice n'est clairement pas inversible (elle a une ligne nulle) donc P4 n'est pas

inversible. Les mêmes opérations transforment I3 en

 1 0 0
−2 1 0
1 −2 1

 et
(
1 −2 1

)
· P4 = 0.

5. P5 =

 1 0 1
2 −1 1
−1 1 −1

 : P5 est inversible d'inverse P−1
5 =

0 1 1
1 0 1
1 −1 −1

 ;

6. P6 =

1 1 −1
2 1 0
2 1 −1

 : P6 est inversible d'inverse : P−1
6 =

−1 0 1
2 1 −2
0 1 −1

.
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