Feuille d'exercices n^o21 : Espaces vectoriels de dimension finie

Exercice 1 [Espaces de matrices]

Donner les dimensions ainsi qu'une base des sous-espaces vectoriels suivants de $\mathcal{M}_n(\mathbb{K})$:

- 1. Les matrices triangulaires supérieures.
- 2. Les matrices triangulaires supérieures strictes.
- 3. Les matrices de diagonales nulles.
- 4. Les matrices diagonales.

- 5. Les matrices scalaires.
- 6. Les matrices symétriques.
- 7. Les matrices antisymétriques.

Exercice 2 [Divisibilité dans les polynômes et sev]

Soit $n \in \mathbb{N}$ et $A \in \mathbb{K}_n[X]$ non nul, dont on note p le degré. En étudiant l'application $\varphi: P \mapsto PA$, Montrer que $F = \{P \in \mathbb{K}_n[X] \mid A|P\}$ est un sev de $\mathbb{K}_n[X]$, et en donner la dimension, une base, ainsi qu'un supplémentaire.

Exercice 3 [Polynôme annulateur]

Soit $n \in \mathbb{N}^*$, E un espace vectoriel de dimension n, et $f \in \mathcal{L}(E)$.

- 1. Montrer qu'il existe $m \in \mathbb{N}^*$ qu'on donnera explicitement tel que $(\mathrm{id}_E, f, f^2, \ldots, f^m)$ est liée.
- 2. En déduire qu'il existe un polynôme P non nul tel que P(f)=0.
- 3. Montrer que le résultat précédent reste valable si on remplace f par $A \in \mathcal{M}_n(\mathbb{K})$.

Exercice 4 [Intersection de deux hyperplans]

Soient H_1, H_2 deux hyperplans d'un espace E de dimension finie $n \in \mathbb{N}^*$. Montrer que $H_1 \neq H_2$ si, et seulement si, dim $H_1 \cap H_2 = n - 2$.

Exercice 5 [Intersection avec un hyperplan]

Soit H un hyperplan de d'un espace E de dimension finie $n \in \mathbb{N}^*$. Montrer que, pour tout sev F de E non inclus dans H on a : $\dim F \cap H = \dim F - 1$.

Exercice 6 [Rangs d'applications linéaires]

Déterminer le rang des applications linéaires suivantes, et donner une base de l'image et du noyau dans chaque cas:

- 1. $\mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (y z, z x, x y)$; 4. $\mathbb{C} \to \mathbb{C}$, $z \mapsto z + i\overline{z}$ (où \mathbb{C} est traité comme \mathbb{R} -ev);
- 2. $\mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (x+y,x,x-y)$:
- 5. $\mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto M + M^T$:
- 3. $\mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x-y, -3x+3y)$;
- 6. $\mathbb{R}_4[X] \to \mathbb{R}_4[X], P \mapsto P (X+1)P'.$

Exercice 7 [Application sur les polynômes et polynômes interpolateurs de Lagrange]

On considère $x_1, \ldots, x_n \in \mathbb{K}$ deux-à-deux distincts, et on s'intéresse à l'application :

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{K}_{n-1}[X] & \to & \mathbb{K}^n \\ P & \mapsto & (P(x_1), \dots, P(x_n)) \end{array} \right.$$

Montrer que φ est bijective, et interpréter ce résultat.

On pose pour tout $i \in [1; n]$: $P_i = \prod_{j \neq i} \frac{X - x_j}{x_i - x_j}$. Montrer que l'image par φ de la famille (P_1, \dots, P_n) est la base canonique de \mathbb{K}^n . Comment interpréter ce résultat?

Exercice 8 [Inclusion d'une image]

Soit E un espace vectoriel de dimension finie, $f \in \mathcal{L}(E)$, et V un sev de E tel que $V \subset f(V)$. Montrer que f(V) = V.

Le résultat est-il vrai si E est supposé de dimension infinie?

Exercice 9 [Application injective]

Soit $f \in \mathcal{L}(E,F)$. Montrer que f est injective si, et seulement si, pour tout famille (x_1,\ldots,x_n) de vecteurs de E on a :

$$rg(f(x_1),\ldots,f(x_n))=rg(x_1,\ldots,x_n).$$

Exercice 10 [Endomorphisme nilpotent]

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$.

- 1. On suppose f nilpotent.
 - (a) On suppose que $m \in \mathbb{N}^*$ et $x \in E$ vérifient que : $f^m(x) \neq 0$. Montrer que la famille $(x, f(x), \dots, f^{m-1}(x))$
 - (b) En déduire que $f^n = 0$.
 - (c) En déduire que l'indice de nilpotence de f (le plus petit $p \in \mathbb{N}^*$ tel que $f^p = 0$) est au plus n.
- 2. On suppose que : pour tout $x \in E$, il existe $m \in \mathbb{N}^*$ tel que $f^m(x) = 0$ (avec m qui dépend a priori de x). Montrer que f est nilpotent, mais que le résultat devient faux si E n'est pas de dimension finie.

Exercice 11 [Projecteurs complémentaires]

Soit E de dimension finie, et $f, g \in \mathcal{L}(E)$ tels que :

$$f + g = \operatorname{Id} \operatorname{et} \operatorname{rg}(f) + \operatorname{rg}(g) = \dim E.$$

Montrer que f et q sont des projecteurs complémentaires (c'est-à-dire tels que $\operatorname{Ker} f = \operatorname{Im} q$ et $\operatorname{Im} f = \operatorname{Ker} q$).

Exercice 12 [Image et noyau supplémentaires]

Soit E de dimension finie, et $f \in \mathcal{L}(E)$. Montrer que les assertions suivantes sont équivalentes :

- (i) $E = \operatorname{Im} f \oplus \operatorname{Ker} f$;
- (iii) $\operatorname{Im} f = \operatorname{Im} f^2$;
- (v) $\operatorname{Ker} f = \operatorname{Ker} f^2$:

- (ii) $E = \operatorname{Im} f + \operatorname{Ker} f$;
- (iv) $\operatorname{rg}(f) = \operatorname{rg}(f^2)$; (vi) $\operatorname{dim}\operatorname{Ker} f = \operatorname{dim}\operatorname{Ker} f^2$.

Exercice 13 [Rang et composée]

Soit $f \in \mathcal{L}(E)$ de rang 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que : $f^2 = \lambda f$.

Exercice 14 [Un polynôme annulateur]

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ telle que : $f \circ f = 3f - 2id_E$.

- 1. Montrer que $\operatorname{Im}(f \operatorname{id}_E) \subset \operatorname{Ker}(f 2\operatorname{id}_E)$ et que $\operatorname{Im}(f 2\operatorname{id}_E) \subset \operatorname{Ker}(f \operatorname{id}_E)$.
- 2. Montrer que $E = \text{Ker}(f \text{id}_E) \oplus \text{Ker}(f 2\text{id}_E)$.

Exercice 15 [Rang d'une composée 1]

Soient f, q deux applications linéaires composables de rangs finis. Montrer que $q \circ f$ est de rang fini, avec $rg(g \circ f) \leq min(rg(f), rg(g)).$

Exercice 16 [Rang d'une composée 2]

Soient E, F deux espaces vectoriels de dimensions finies, et $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, E)$ telles que : $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

Montrer que f, g, $f \circ g$ et $g \circ f$ ont même rang.

Exercice 17 [Rang d'une somme]

Soient $f, g \in \mathcal{L}(E, F)$ de rangs finis. Montrer que :

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g)$$

et que ces inégalités ne peuvent être améliorées (dans le sens où on peut trouver f, g qui réalisent les égalités extrêmes).