Interro nº9

Exercice 1 Pour chaque choix de $A_i \in \mathcal{M}_2(\mathbb{R})$ ou $\mathcal{M}_3(\mathbb{R})$ suivant, calculer A_i^2 , puis calculer A_i^k pour tout $k \in \mathbb{N}$. On vérifiera bien que la formule donnée pour $k \in \mathbb{N}$ est valable pour k = 0, 1, 2:

$$1. \ A_1 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$3. \ A_3 = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$

5.
$$A_5 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$2. \ A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

4.
$$A_4 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$6. \ A_6 = \begin{pmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{pmatrix}$$

Exercice 2

Dire si les matrices P_i suivantes sont inversibles et le prouver. En cas d'inversibilité, on donnera l'inverse de P et on vérifiera bien **EN FAISANT FIGURER LE CALCUL SUR LA COPIE** que le produit $P \cdot P^{-1}$ vaut bien la matrice identité.

1.
$$P_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$3. \ P_3 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

2.
$$P_2 = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

4.
$$P_4 = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

Exercice 3

Pour chacune des matrices Q_i suivantes, dire pour quelle(s) valeur(s) de $t \in \mathbb{R}$ elle est inversible, et donner alors son inverse :

1.
$$Q_1 = \begin{pmatrix} t & 1 & 1 \\ 1 & t & 1 \\ 1 & 1 & t \end{pmatrix}$$

$$2. \ Q_2 = \begin{pmatrix} 1 & 0 & t \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$