Interrogation 4

Question éliminatoire : on considère I,J deux sous-ensembles de $\mathbb{R},$ et $f:I\to J$ bijective et dérivable sur I.

Donner une condition pour que f^{-1} soit dérivable sur J, et donner alors sa fonction dérivée.

Exercice 1 On considère $\alpha > 0$.

- 1. Donner le domaine de définition, la dérivée et dresser le tableau de variations de la fonction $f_{\alpha}: x \mapsto x^{\alpha}$.
- 2. La fonction f_{α} est-elle prolongeable par continuité en 0 ? Son prolongement éventuel est-il dérivable en 0 (on pourra discuter suivant la valeur de α).
- 3. La fonction f_{α} est-elle bijective de \mathbb{R}_{+}^{*} dans lui-même? Si oui, donner sa bijection réciproque.

Exercice 2 On considère $a \geq 1$.

- 1. Donner le domaine de définition, la dérivée et dresser le tableau de variations de la fonction $\exp_a: x \mapsto a^x$ (on pourra discuter suivant la valeur de a).
- 2. La fonction \exp_a est-elle bijective de \mathbb{R} dans \mathbb{R}_+^* ? Si oui, donner sa bijection réciproque (on pourra discuter suivant la valeur de a)

Exercice 3 Calculer les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{\ln(x^4 + 1)}{x^2 + 3}$$

$$2. \lim_{x \to +\infty} \frac{e^{3x}}{x^3 + 1}$$

3.
$$\lim_{x \to +\infty} \frac{x^3 - 3x \ln x + \ln x}{e^x + x \sin x}$$