Interrogation 7

- **Exercice 1** 1. Soit $n \in \mathbb{N}^*$. Rappeler la définition de ce qu'est une racine n-ème de l'unité. Et donner explicitement l'ensemble \mathbb{U}_n , en écrivant ses éléments sous la forme $e^{i\theta}$ pour $\theta \in]-\pi;\pi]$.
 - 2. Donner les racines carrées de -2i sous forme algébrique, et sous forme trigonométrique.
 - 3. En déduire les racines du polynôme $X^2 (1+i)X + i$.
 - 4. Résoudre le système : $\begin{cases} x+y &= 1+i \\ xy &= i \end{cases}.$
 - 1. Une racine n-ème est un complexe z tel que $z^n = 1$. On a :

$$\mathbb{U}_n = \{ e^{2ik\pi/n} \, | \, k \in \mathbb{Z} \cap] - n/2; n/2] \}$$

- 2. On peut passer par le système, ou directement reconnaître que $-2i=2e^{-\pi/2}$ dont les racines carrées sont $\pm\sqrt{2}e^{-i\pi/4}$, c'est-à-dire $1-i=\sqrt{2}e^{-i\pi/4}$ et $-1+i=\sqrt{2}e^{3i\pi/4}$.
- 3. Le polynôme est de discriminant $\Delta = (1+i)^2 4i = -2i$. Les racines sont donc :

$$z_1 = \frac{(1+i) + (1-i)}{2} = 1 \text{ et } z_2 = \frac{(1+i) - (1-i)}{2} = i.$$

4. On a un système somme produit : les solutions sont les couples formant les racines de $X^2 - (1+i)X + i$, donc les solutions sont (1,i) et (i,1).

Exercice 2

- 1. Soit $z \in \mathbb{C}$. Donner la valeur de e^z sous forme algébrique puis sous forme trigonométrique.
- 2. Soit $a \in \mathbb{C}$. Résoudre l'équation $e^z = a$ d'inconnue $z \in \mathbb{C}$.
- 1. $e^z = e^{\text{Re}(z)}\cos(\text{Im}(z)) + ie^{\text{Re}(z)}\sin(\text{Im}(z))$ (forme algébrique) ou $e^{\text{Re}(z)}e^{i\text{Im}(z)}$ (forme trigonométrique).
- 2. Si a = 0: pas de solution.

Sinon $e^z = a$ a pour ensemble solution : $\{\ln(|a|) + i(\arg(a) + 2k\pi) \mid k \in \mathbb{Z}\}.$

Exercice 3

- 1. Rappeler les formules d'Euler et de Moivre.
- 2. Linéariser $\cos^3(x)$.
- 3. Exprimer $\sin(3x)$ comme un polynôme en $\sin(x)$.
- 1. Euler: $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin(\theta) = \frac{e^{i\theta} e^{-i\theta}}{2i}$. Moivre: $\cos(n\theta) + i\sin(n\theta) = e^{in\theta} = (\cos(\theta) + i\sin(\theta))^n$.
- 2. On utilise la formule d'Euler :

$$\cos^3(x) = \left(\frac{e^{ix} + e^{ix}}{2}\right)^3 = \frac{e^{3ix} + e^{-3ix} + 3e^{ix} + 3e^{-ix}}{8} = \frac{\cos(3x)}{4} + \frac{3\cos(x)}{4}.$$

3. On utilise la formule de Moivre :

$$\sin(3x) = \operatorname{Im}\left(\left(\cos(x) + i\sin(x)\right)^3\right) = 3\sin(x)\cos^2(x) - \sin^3(x) = -4\sin^3(x) + 3\sin(x)$$

Exercice 4 Dire pour quelle(s) valeur(s) de x les expressions $\cos(2\arccos(x))$ et $\sin(2\arcsin(x))$ ont un sens, et les simplifier.

Les deux expressions sont définies pour $x \in [-1; 1]$. Pour un tel x, on a $\arcsin(x) \in [-\pi/2; \pi/2]$ donc $\cos(\arcsin(x)) \ge 0$ puis $\cos(\arcsin(x)) = \sqrt{1-x^2}$. Et par formules de duplication :

$$\cos(2\arccos(x)) = 2\cos^2(\arccos(x)) - 1 = 2x^2 - 1$$
$$\sin(2\arcsin(x)) = 2\cos(\arcsin(x))\sin(\arcsin(x)) = 2\sqrt{1 - x^2}x.$$