Interrogation 6

Exercice 1 On considère $\alpha > 0$.

- 1. Donner le domaine de définition, la dérivée et dresser le tableau de variations de la fonction $f_{\alpha}: x \mapsto x^{\alpha}$.
- 2. La fonction f_{α} est-elle prolongeable par continuité en 0 ? Son prolongement éventuel est-il dérivable en 0 (on pourra discuter suivant la valeur de α).
- 3. La fonction f_{α} est-elle bijective de \mathbb{R}_{+}^{*} dans lui-même? Si oui, donner sa bijection réciproque.
- 1. On a directement d'après le cours que $f_{\alpha}: x \mapsto x^{\alpha} = \exp(\alpha \ln(x))$ est définie et dérivable sur \mathbb{R}_{+}^{*} , de dérivée $x \mapsto \alpha x^{\alpha-1} > 0$ (comme $\alpha > 0$), donc strictement croissante sur \mathbb{R}_{+}^{*} . D'où le tableau :

x	0	1	$+\infty$
$f_{\alpha} \\ \alpha > 0$	0 -	11	+∞

- 2. Comme $\lim_{x\to 0^+} f_{\alpha}(x) = 0$ (variations précédentes comme $\alpha > 0$), alors f_{α} est prolongeable par continuité en 0 avec $f_{\alpha}(0) = 0$. Ce prolongement est :
 - dérivable de nombre dérivé nul en 0 si $\alpha > 1$;
 - dérivable de nombre dérivé égal à 1 en 0 si $\alpha = 1$;
 - non dérivable avec une demi-tangente verticale en 0 si $\alpha < 1$.
- 3. La fonction f_{α} est bien bijective de R_{+}^{*} dans lui-même : sa bijection réciproque est $f_{1/\alpha}: x \mapsto x^{1/\alpha}$. Et les prolongement par continuité en 0 donnent même des bijections réciproques l'une de l'autre de \mathbb{R}_{+} dans \mathbb{R}_{+} .

Exercice 2 On considère $a \in]0;1[$.

- 1. Donner le domaine de définition, la dérivée et dresser le tableau de variations de la fonction $\exp_a: x \mapsto a^x$.
- 2. La fonction \exp_a est-elle bijective de \mathbb{R} dans \mathbb{R}_+^* ? Si oui, donner sa bijection réciproque.
- 1. On a directement d'après le cours que $\exp_a: x \mapsto a^x = \exp(x\ln(a))$ est définie et dérivable sur \mathbb{R} , d dérivée $x \mapsto \ln(a)a^x < 0$ (comme $a \in]0;1[$), donc strictement décroissante sur \mathbb{R} . D'où le tableau :

x	$-\infty$	0	$+\infty$
$\exp_a \\ a < 1$	+∞ _	11	0

2. La fonction \exp_a est bijective de \mathbb{R} dans \mathbb{R}_+^* . Sa bijection réciproque est $\log_a : x \mapsto \frac{\ln(x)}{\ln(a)}$.

Exercice 3

1. Complétez les formules suivantes (avec toutes les formules s'il y en a plusieurs) :

(a)
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

(b)
$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

(c)
$$\cos(2x) = 2\cos^2(x) - 1 = \cos^2(x) - \sin^2(x) = 1 - 2\sin^2(x)$$

(d)
$$\sin(2x) = 2\cos(x)\sin(x)$$

2. Compléter les formules suivantes :

(a)
$$\cos(\pi/6) = \frac{\sqrt{3}}{2}$$

(b)
$$\tan(\pi/3) = \sqrt{3}$$

(c)
$$\frac{1}{2} = \sin\left(\frac{37\pi}{6}\right)$$

(d)
$$1 = \tan\left(\frac{37\pi}{4}\right)$$

Exercice 4 Calculer les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{\ln(\sqrt{x})}{x^2 + 1} :$$

$$\frac{\ln(\sqrt{x})}{x^2 + 1} = \frac{\ln(\sqrt{x})}{\sqrt{x^2}} \frac{\sqrt{x^2}}{x^2 + 1} = \underbrace{\frac{\ln(\sqrt{x})}{\sqrt{x^2}}}_{\to 0 \text{ par cc}} \underbrace{\frac{1}{x + 1/x}}_{\to 0 \text{ par quotient}} \xrightarrow[x \to +\infty]{} 0 \text{ par produit.}$$

2.
$$\lim_{x \to +\infty} \frac{e^x - x^2}{x^5 - 37}$$
:

$$\frac{e^x - x^2}{x^5 - 37} = \underbrace{\frac{e^x}{x^5}}_{\text{par cc}} \underbrace{\frac{1 - x^2/e^x}{1 - 37/x^5}}_{\text{par cc et quotient}} \xrightarrow[x \to +\infty]{} + \infty \text{ par produit}$$

3.
$$\lim_{x \to 0} \frac{\ln(1+x)}{e^x - 1}$$
:

$$\frac{\ln(1+x)}{e^x-1} = \frac{\ln(1+x)}{x} \cdot \frac{x}{e^x-1} \xrightarrow[x\to 0]{} 1 \text{ par limites classiques et produit}$$

Exercice 5 Donner $A, \varphi \in \mathbb{R}$ tels que :

$$\forall t \in \mathbb{R}, \ 3\cos(t) + \sqrt{3}\sin(t) = A\cos(t - \varphi).$$

Soit $t \in \mathbb{R}$. On a :

$$3\cos(t) + \sqrt{3}\sin(t) = 2\sqrt{3}\left(\frac{\sqrt{3}}{2}\cos(t) + \frac{1}{2}\sin(t)\right) = 2\sqrt{3}\left(\cos(\pi/6)\cos(t) + \sin(\pi/6)\sin(t)\right) = 2\sqrt{3}\cos(t - \pi/6)\cos(t) + \sin(\pi/6)\sin(t) = 2\sqrt{3}\cos(t - \pi/6)\cos(t) + \sin(\pi/6)\cos(t) = 2\sqrt{3}\cos(t - \pi/6)\cos(t) + \sin(\pi/6)\sin(t) = 2\sqrt{3}\cos(t - \pi/6)\cos(t) + \sin(\pi/6)\cos(t) = 2\sqrt{3}\cos(t - \pi/6)\cos(t) = 2\sqrt{3}\cos(t - \pi/6)\cos(t - \pi/6)$$

donc $A = 2\sqrt{3}$ et $\varphi = \pi/6$) conviennent.