DS nº8

I Exercices

Exercice 1 [Une application linéaire]

On considère l'application f définie sur \mathbb{R}^3 par :

$$\forall x, y, z \in \mathbb{R}, \ f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3x + 2y - 4z \\ 2x + 2z \\ 4x - 2y + 5z \end{pmatrix}.$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 .
- 2. Déterminer le noyau de f, et en donner une base.
- 3. Déterminer l'image de f, et en donner une base.
- 4. L'application f est-elle injective, surjective, ou bijective?
- 5. Montrer que f est un projecteur. Que peut-on en déduire sur Kerf et Imf?
- 6. Soit $(x, y, z) \in \mathbb{R}^3$. Donner les réels a, b, c, d, e, f tels que (x, y, z) = (a, b, c) + (d, e, f) avec $(a, b, c) \in \text{Im} f$ et $(d, e, f) \in \text{Ker} f$.
- 7. On note s la symétrie par rapport à $\operatorname{Im} f$ parallèlement à $\operatorname{Ker} f$: exprimer s en fonction de f, puis donner l'expression explicite de s(x,y,z) pour $x,y,z\in\mathbb{R}$.

Exercice 2 [Développements limités et analyse asymptotique]

- 1. Soit $n \in \mathbb{N}$. Donner (sous forme de somme) les développements limités en 0 de $\cos(x)$ à l'ordre 2n, Arctan(x) à l'ordre 2n + 1 et $\ln(1+x)$ à l'ordre n.
- 2. Donner le développement limité de $\sin(x)\tan(x)$ en 0 à l'ordre 3.
- 3. Donner le développement limité de $\ln(1 + \cos(x))$ en 0 à l'ordre 5.
- 4. On souhaite étudier au voisinage de 1 la fonction $f: x \mapsto \frac{\ln(x)}{2-x} x$:
 - (a) Montrer que f est définie sur]0;2[, et admet des développements limités à tout ordre en tout point de]0;2[.
 - (b) Calculer le développement limité de f à l'ordre 4 en 1.
 - (c) En déduire les valeurs de $f^{(k)}(1)$ pour $k \in [0; 4]$.
 - (d) En déduire également que la fonction f possède un extremum local en 1, et préciser la nature de cet extremum. S'agit-il d'un extremum global?
- 5. On considère la fonction $g: x \mapsto \sqrt[3]{(x^2-2)(x+3)}$.
 - (a) Donner l'ensemble de définition de g.
 - (b) Rappelez le développement limité à l'ordre 2 en 0 de $\sqrt[3]{1+x}$.
 - (c) En déduire un développement asymptotique de g(x) pour x tendant vers $+\infty$ à un o $\left(\frac{1}{x}\right)$ près.
 - (d) En déduire que la courbe de g possède une asymptote en $+\infty$, dont on donnera l'équation, et la position relative par rapport à la courbe de g.
 - (e) Étudier les asymptotes éventuelles à la courbe de g en $-\infty$.

Exercice 3 [Hyperplan et projecteur]

Soit E un espace vectoriel, et H un hyperplan de E. On pose $\varphi \in E^*$ telle que $H = \text{Ker}(\varphi)$.

- 1. Justifier qu'il existe $x_0 \in E$ tel que $\varphi(x_0) = 1$, et exprimer, à l'aide de x_0 et des données de l'énoncé, tous les vecteurs $x \in E$ tels que $\varphi(x) = 1$.
 - Pour la suite, on fixe x_0 un tel élément, et on fixe l'application $fx \mapsto x \varphi(x) \cdot x_0$.
- 2. Montrer que f est un endomorphisme de E.
- 3. Déterminer le noyau de f.

 Indication : on pourra commencer par calculer $f(x_0)$.
- 4. Montrer que H = Im f.
- 5. Montrer que f est un projecteur, et le décrire simplement.

Exercice 4 [Composée de projecteurs]

Soit E un espace vectoriel. On considère p, q deux projecteurs de E qui commutent. On pose $r = p \circ q$.

- 1. Montrer que r est un projecteur de E.
- 2. Montrer que $\operatorname{Im}(r) = \operatorname{Im} p \cap \operatorname{Im} q$.
- 3. Montrer que Ker(r) = Ker(p) + Ker(q).

II Problèmes

II.1 Problème 1 : Équation différentielle et espace vectoriel

On cherche dans ce problème à résoudre l'équation différentielle

$$y''' + y'' + y' + y = 0$$

On note \mathcal{S} l'ensemble des solutions de cette équation :

$$S = \{ y \in C^{\infty} | y''' + y'' + y' + y = 0 \}$$

- 1. Question préliminaire : factoriser dans \mathbb{R} et dans \mathbb{C} le polynôme $X^3 + X^2 + X + 1$.
- 2. Montrer que \mathcal{S} est un \mathbb{R} -espace vectoriel. Montrer que \mathcal{S} est stable par dérivation, c'est-à-dire que pour tout $f \in \mathcal{S}$, on a $f' \in \mathcal{S}$.
- 3. On considère $g: x \mapsto e^{-x}$.
 - (a) Montrer que $g \in \mathcal{S}$.
 - (b) En déduire que $Vect(g) \subset \mathcal{S}$.
 - (c) Déterminer une équation différentielle dont Vect(g) est exactement l'ensemble des solutions.
- 4. On pose $\mathcal{T} = \{ y \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) | y'' + y = 0 \}.$
 - (a) Montrer que \mathcal{T} est un sous-espace vectoriel de \mathcal{S} .
 - (b) Déterminer deux fonctions c et s telles que $\mathcal{T} = \text{Vect}(c, s)$.
- 5. Montrer que pour toute fonction $f \in \mathcal{S}$, on a $f'' + f \in \text{Vect}(g)$.
- 6. Montrer de même que pour toute $f \in \mathcal{S}$, on a $f' + f \in \mathcal{T}$.
- 7. Montrer que $S = \text{Vect}(q) \oplus T$.
- 8. En déduire une expression explicite de S, par exemple en fonction de g, c et s.

II.2 Problème 2 : Noyaux et images itérés d'un endomorphisme

Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$. On dit qu'un sous-espace vectoriel V de E est **stable** par E lorsque $f(V) \subset V$, c'est-à-dire lorsque pour tout $v \in V$, on a $f(v) \in V$. Le cas échéant, on peut considérer la restriction f_V de f à V; il s'agit (on l'admet) d'un endomorphisme de V.

On notera, comme dans le cours, $f^0 = \mathrm{Id}_E$ et, pour $n \in \mathbb{N}$, $f^{n+1} = f \circ f^n$.

On note, pour tout $n \in \mathbb{N}$, $F_n = \text{Im}(f^n)$ et $G_n = \text{Ker}(f^n)$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, F_n et G_n sont des sous-espaces vectoriels de E.
- 2. Montrer que les suites de sous-espaces vectoriels $(F_n)_{n\in\mathbb{N}}$ et $(G_n)_{n\in\mathbb{N}}$ sont respectivement décroissante et croissante pour l'inclusion.

On pose désormais :

$$F = \bigcap_{n \in \mathbb{N}} F_n$$
 et $G = \bigcup_{n \in \mathbb{N}} G_n$

- 3. Montrer que F et G sont des sous-espaces vectoriels de E.
- 4. Montrer que F et G sont stables par f.
- 5. On suppose que f est un automorphisme de E. Déterminer F et G.

Dans les trois prochaines questions, on suppose que $N \in \mathbb{N}$ est un entier tel que $F_{N+1} = F_N$.

- 6. Montrer que : pour tout $p \in \mathbb{N}, F_{N+p} = F_N$.
- 7. Justifier l'existence d'un plus petit entier $k \in \mathbb{N}$ tel que $F_{k+1} = F_k$. On note désormais cet entier r(f).
- 8. Montrer que $E = F + G_{r(f)}$.

Dans les trois prochaines questions, on suppose que $N \in \mathbb{N}$ est un entier tel que $G_{N+1} = G_N$.

- 9. Montrer que : pour tout $p \in \mathbb{N}, G_{N+p} = G_N$.
- 10. Justifier l'existence d'un plus petit entier $k \in \mathbb{N}$ tel que $G_{k+1} = G_k$. On note désormais cet entier s(f).
- 11. Montrer que $F_{s(f)} \cap G = \{0_E\}.$
- 12. On suppose dans cette question que $n \in \mathbb{N}$ est tel que $F_n = F_{n+1}$ et $G_{n+1} = G_{n+2}$. Montrer que $G_n = G_{n+1}$.
- 13. On suppose dans cette question que $n \in \mathbb{N}$ est tel que $G_n = G_{n+1}$ et $F_{n+1} = F_{n+2}$. Montrer que $F_n = F_{n+1}$.

On dit que f est **de caractère fini** lorsqu'il existe un entier r et un entier s tels que $F_r = F_{r+1}$ et $G_s = G_{s+1}$. On suppose dans les quatre prochaines questions que f est de caractère fini. On peut donc considérer les entiers r(f) et s(f) définis aux questions 7 et 10.

- 14. Montrer que r(f) = s(f).
- 15. Montrer que F et G sont supplémentaires dans E.
- 16. Montrer que la restriction de f à F est un automorphisme.
- 17. Montrer que la restriction de f à G est **nilpotente**, c'est-à-dire qu'il existe un entier p tel que $(f_G)^p = 0$.
- 18. Donner un exemple d'espace vectoriel E et d'endomorphisme $f \in \mathcal{L}(E)$ qui n'est pas de caractère fini. (Conseil : prendre un « gros » espace, qui n'admet pas de base finie, et un endomorphisme bien choisi!)