DS nº8

I Exercices

Exercice 1 [Détermination d'une application linéaire]

On considère ici $E = \mathbb{R}_3[X]$

1. La famille (e_1, e_2, e_3, e_4) est graduée : c'est donc une base de $\mathbb{R}_3[X]$. Pour $P = aX^3 + bX^2 + cX + d$ et $\alpha, \beta, \gamma, \delta \in \mathbb{R}$, on a :

$$P = \alpha e_1 + \beta e_2 + \gamma e_3 + \delta e_4 \Leftrightarrow \begin{cases} \alpha + \beta + \gamma + \delta &= d \\ \beta + \delta &= c \\ \gamma + \delta &= b \\ \delta &= a \end{cases}$$

et le système étant échelonné, on le résout directement par remontée ce qui donne :

$$P = aX^{3} + bX^{2} + cX + d = ae_{4} + (b - a)e_{3} + (c - a)e_{2} + (d - b - c + a)e_{1}$$

donc les coordonnées de P dans la base (e_1, e_2, e_3, e_4) sont : (a - b - c + d, -a + c, -a + b, a).

2. Par linéarité, on a directement :

$$f(P) = f(ae_4 + (b-a)e_3 + (c-a)e_2 + (d-b-c+a)e_1) = af(e_4) + (b-a)f(e_3) + (c-a)f(e_2) + (d-b-c+a)f(e_1)$$
$$= (d-c)e_1 + ce_2 = cX + d$$

3. Avec les expressions précédentes, on a directement :

$$\operatorname{Ker} f = \{aX^3 + bX^2 \mid a, b \in \mathbb{R}\} = \operatorname{Vect}(X^2, X^3) \text{ et } \operatorname{Im} f = \{cX + d \mid x, d \in \mathbb{R}\} = \operatorname{Vect}(1, X) = \mathbb{R}_1[X]$$

où les familles données sont des bases (polynômes non nuls de degrés distincts, donc libre, et génératrices par construction).

4. Pour $P = aX^3 + bX^2 + cX + d$, on a :

$$f \circ f(P) = f(cX + d) = cX + d = f(P)$$

donc $f \circ f = f$: f est le projecteur sur $\mathbb{R}_1[X]$ parallèlement à $\mathrm{Vect}(X^2, X^3)$.

Exercice 2 [Une inégalité]

- 1. La quantité f(x) est définie pour $\ln(x) > 0$, c'est-à-dire sur $]1; +\infty[$.
- 2. En tant que composée de la fonction ln avec elle-même, qui est de classe C^2 (même C^{∞}), la fonction f est C^2 sur son ensemble de définition, avec :

$$f': x \mapsto \frac{1}{x \ln(x)}$$
 et $f'': x \mapsto -\frac{\ln(x) + 1}{(x \ln(x))^2}$.

3. Pour tout $x \in]1; +\infty[$, $\ln(x) > 0$ donc $\ln(x) + 1 > 0$ puis f''(x) < 0. La fonction f est donc concave.

4. Soient $a, b \in]1; +\infty[$. Par concavité de f, on déduit que :

$$f\left(\frac{a+b}{2}\right) \geqslant \frac{f(a)+f(b)}{2}$$

c'est-à-dire:

$$\ln\left(\ln\left(\frac{a+b}{2}\right)\right) \geqslant \frac{\ln(\ln(a)) + \ln(\ln(b))}{2} = \ln\left(\sqrt{\ln(a)\ln(b)}\right)$$

et en composant avec la fonction exp, qui est croissante:

$$\ln\left(\frac{a+b}{2}\right) \geqslant \sqrt{\ln(a)\ln(b)}.$$

D'où le résultat.

Exercice 3 [Une suite récurrente]

On souhaite étudier le comportement de la suite (u_n) définie par :

$$u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \cos(u_n).$$

1. Un point fixe de cos est solution de l'équation $x = \cos(x)$, donc nécessairement dans [-1; 1]. Cherchons donc les points fixes de cos sur [-1; 1[. On pose $g = \cos - \mathrm{id}$. Par combinaison linéaire, g est dérivable sur [-1; 1] avec : $g' = -\sin - 1 < 0$ (car la fonction sin ne prend jamais la valeur -1 sur $[-1; 1] \subset]-\pi/2:\pi/2[$). Donc g est strictement décroissante sur [-1; 1], avec :

$$g(-1) = \cos(-1) - (-1) = \cos(1) + 1 \ge 0$$
 et $g(1) = \cos(1) - 1 \le 0$

donc par corollaire du théorème des valeurs intermédiaires, la fonction g étant continue, elle s'annule une unique fois sur [-1;1]. Son unique point d'annulation est l'unique point fixe de cos (sur [-1;1] donc sur \mathbb{R}).

2. On peut donner K explicitement en étudiant les variations de sin sur [-1;1]. Ou alors on peut faire ça moins explicitement, ce que l'on décide de faire ici.

La fonction $\cos' = -\sin$ est continue sur le segment [-1; 1], donc sa composée avec la fonction valeur absolue aussi.

Par théorème des bornes atteintes, il existe $c \in [-1; 1]$ tel que :

$$\forall x \in [-1; 1], |\cos'(x)| \leq |\sin(x)|$$

et $K = |\sin(c)|$ convient : c'est bien un majorant, et le fait que $c \in [-1; 1]$ assure que $|c| < \pi/2$ donc K < 1.

3. Soit $n \in \mathbb{N}^*$. Alors $u_n = \cos(u_{n-1}) \in [-1; 1[$. Et ainsi $u_n, \ell \in [-1; 1[$. Par inégalité des accroissements finis appliquée à cos entre u_n et ℓ , on déduit que :

$$|\cos(u_n) - \cos(\ell)| \le K|u_n - \ell|$$

et par définition de u_{n+1} et de $\ell = \cos(\ell)$ on a bien :

$$\forall n \in \mathbb{N}^*, |u_{n+1} - \ell| \leq K|u_n - \ell|$$

Le résultat suivant se déduit par récurrence :

(a) initialisation :pour n=1, on veut montrer que $|u_1-\ell|\leqslant K^0|u_1-\ell|$, ce qui est vrai ; d'où l'hérédité ;

(b) hérédité : soit $n \in \mathbb{N}^*$ tel que $|u_n - \ell| \leq K^{n-1}|u_1 - \ell|$. Alors par la question précédente :

$$|u_{n+1} - \ell| \le K|u_n - \ell| \le K \cdot K^{n-1}|u_1 - \ell| = K^{n+1-1}|u_1 - \ell|.$$

ce qui conclut l'hérédité.

D'où le résulta par récurrence, à savoir que :

$$\forall n \in \mathbb{N}^*, |u_n - \ell| \leqslant K^{n-1}|u_1 - \ell|.$$

4. Comme $K \in [0; 1[$, on déduit que $\lim_{n \to +\infty} K^n = 0$, puis par produit $\lim_{n \to +\infty} K^{n-1} |u_1 - \ell| = 0$.

Et par encadrement : $\lim_{n \to +\infty} u_n = \ell$.

Exercice 4 [Une primitive de la fonction Arccos]

On souhaite ici déterminer une primitive de la fonction Arccos. On va redémontrer certaines propriétés de cette fonction. On peut utiliser librement toutes les propriétés des fonctions cos et sin (caractère \mathcal{C}^{∞} , dérivées successives, monotonie, etc.).

- 1. La fonction Arccos est la bijection réciproque de la fonction cos restreinte à $[0; \pi]$. Elle est définie de [-1; 1] dans $[0; \pi]$.
- 2. La fonction cos est continue et strictement décroissante sur $[0; \pi]$: la fonction Arccos est donc continue sur [-1; 1] par théorème de la bijection monotone.

La fonction cos est infiniment dérivable sur \mathbb{R} , donc sur $[0;\pi]$. De plus, sa dérivée sur $[0;\pi]$ est $-\sin$, qui ne s'annule qu'en 0 et π : la fonction Arccos est donc dérivable, et même \mathcal{C}^{∞} , sur]-1;1[(c'est-à-dire son ensemble de définition privé des images réciproques de points en lesquels la dérivée de cos s'annule). De plus, on a :

$$\operatorname{Arccos}': x \mapsto \frac{1}{\cos' \circ \operatorname{Arccos}(x)} = -\frac{1}{\sin(\operatorname{Arccos}(x))}$$

et pour tout $x \in]-1;1[, Arcos(x) \in]0;\pi[donc sin(Arccos(x) \ge 0 puis :$

$$\sin(\operatorname{Arccos}(x)) = \sqrt{\sin^2(\operatorname{Arccos}(x))} = \sqrt{1 - \cos^2(\operatorname{Arccos}(x))} = \sqrt{1 - x^2}$$

c'est-à-dire que :

$$\operatorname{Arccos}': x \mapsto -\frac{1}{\sqrt{1-x^2}}.$$

- 3. On pose $f: x \mapsto x \operatorname{Arccos}(x) \sqrt{1-x^2} + 1$.
 - (a) La fonction $x \mapsto \sqrt{1-x^2}$ est définie en les x tels que $1-x^2 \geqslant 0$, donc sur [-1;1], de même que la fonction Arccos. Par produit et somme, la fonction f est définie sur [-1;1], donc a=-1 et b=1.

Comme les fonctions $x \mapsto x$, Arccos, $x \mapsto \sqrt{x}$ et $x \mapsto 1-x^2$ sont continues, on déduit également par composée, produit et somme que f est continue sur son ensemble de définition.

(b) La fonction $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* . Par composée, la fonction $x \mapsto \sqrt{1-x^2}$ est dérivable en les x tels que $1-x^2>0$, donc sur]-1;1[.

On a vu en question 2. que Arccos est également dérivable sur] -1;1[.

La fonction $x\mapsto x$ est dérivable sur $\mathbb R$ (donc sur] -1;1[) en tant que fonction polynomiale.

Par produit et somme, la fonction f est dérivable sur] - 1; 1[avec :

$$f': x \mapsto \operatorname{Arccos}(x) + x\operatorname{Arccos}'(x) - \frac{-2x}{2\sqrt{1-x^2}} = \operatorname{Arccos}(x) - \frac{x}{\sqrt{1-x^2}} + \frac{x}{\sqrt{1-x^2}} = \operatorname{Arccos}(x).$$

- (c) On utilise le théorème de la limite de la dérivée pour montrer que f est dérivable en 1 et en -1:
 - en 1 : la fonction Arccos étant continue en 1, on a :

$$\lim_{x \to 1} f'(x) = \lim_{x \to 1} \operatorname{Arccos}(x) = \operatorname{Arccos}(1) = 0.$$

Ainsi, la fonction f est continue sur [-1;1], dérivable sur]-1;1[avec $\lim_{x\to 1} f'(x)=0$ (limite finie), donc f est également dérivable en 1 avec $f'(1)=0=\operatorname{Arccos}(1)$.

— en -1 on procède de même : la fonction Arccos étant continue en -1, on a :

$$\lim_{x \to -1} f'(x) = \lim_{x \to -1} \operatorname{Arccos}(x) = \operatorname{Arccos}(-1) = \pi.$$

Ainsi, la fonction f est continue sur [-1;1], dérivable sur]-1;1[avec $\lim_{x\to -1} f'(x)=\pi$ (limite finie), donc f est également dérivable en -1 avec $f'(-1)=\pi=\operatorname{Arccos}(-1)$.

(d) On déduit (par disjonction de cas suivant que $x \in]-1;1[, x=1 \text{ ou } x=-1)$ que f est dérivable sur [-1;1] avec :

$$\forall x \in [-1; 1], \ f'(x) = \operatorname{Arccos}(x).$$

Comme de plus $f(0) = 0 \cdot \operatorname{Arccos}(0) - \sqrt{1-0} + 1 = -1 + 1 = 0$, cela veut bien dire que f est l'unique primitive de Arccos sur [-1; 1] qui s'annule en 0.

II Problèmes

II.1 Problème 1 : Endomorphisme sur un espace de polynômes

Partie I. Un exemple.

Soit $\varphi: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ l'application définie par

$$\forall P \in \mathbb{R}_3[X], \ \varphi(P) = P'' - \frac{1}{3}XP' + P.$$

- 1. On veut montrer que φ est linéaire, et que φ est à valeurs dans $\mathbb{R}_3[X]$:
 - linéarité : soient $P, Q \in \mathbb{R}_3[X]$ et $\lambda, \mu \in \mathbb{R}$. Par linéarité de la dérivation et bilinéarité du produit de polynômes :

$$\varphi(\lambda P + \mu Q) = (\lambda P + \mu Q)'' - \frac{1}{3}X(\lambda P + \mu Q)' + (\lambda P + \mu Q)$$
$$= \lambda(P'' - \frac{1}{3}XP' + P) + \mu(Q'' - \frac{1}{3}XQ' + Q) = \lambda\varphi(P) + \mu\varphi(Q)$$

ce qui prouve la linéarité;

— pour $P \in \mathbb{R}_3[X] : P' \in \mathbb{R}_2[X]$ donc $XP' \in \mathbb{R}_3[X]$. Et $P'' \in \mathbb{R}_1[X] \subset \mathbb{R}_3[X]$. Par structure d'espace vectoriel de $\mathbb{R}_3[X] : \varphi(P) \in \mathbb{R}_3[X]$.

Et finalement : $\varphi \in \mathcal{L}(\mathbb{R}_3[X])$.

2. On peut raisonner sur le degré, ou directement considérer l'image d'un élément quelconque. Si $P=aX^3+bX^2+cX+d$, alors :

$$P \in \text{Ker}\varphi \Leftrightarrow \varphi(P) = 0 = P'' - \frac{1}{3}XP' + P = (6aX + 2b) - \frac{1}{3}(3aX^3 + 2bX^2 + cX) + (aX^3 + bX^2 + cX + d)$$
$$\Leftrightarrow 0 \cdot X^3 + \frac{1}{3}bX^2 + (6a + 2c/3)X + (2b + d) = 0 \Leftrightarrow b = 6a + 2c/3 = 2b + d = 0 \Leftrightarrow b = d = 0 \text{ et } c = -9a$$

$$\Leftrightarrow P = a(X^3 - 9X)$$

et ainsi $Ker(\varphi) = Vect(X^3 - 9X)$.

Comme $\text{Ker}\varphi \neq \{0\}$, l'application φ n'est pas injective.

3. On a par calcul direct:

$$\varphi(X^3) = 6X$$
, $\varphi(X^2) = \frac{1}{3}X^2 + 2$, $\varphi(X) = \frac{2}{3}X$ et $\varphi(1) = 1$

Et comme $\mathbb{R}_3[X] = \text{Vect}(1, X, X^2, X^3)$, on déduit que :

$$\operatorname{Im}\varphi = \operatorname{Vect}(\varphi(1), \varphi(X), \varphi(X^2), \varphi(X^3)) = \operatorname{Vect}(1, \frac{2}{3}X, \frac{1}{3}X^2 + 2, 6X)$$

mais la famille $(1, \frac{2}{3}X, \frac{1}{3}X^2 + 2)$ est graduée : c'est donc une base de $\mathbb{R}_2[X]$. Et $\varphi(X^3) = 6X \in \mathbb{R}_2[X] = \text{Vect}(1, \frac{2}{3}X, \frac{1}{3}X^2 + 2)$. Et finalement :

$$\text{Im}\varphi = \text{Vect}(1, \frac{2}{3}X, \frac{1}{3}X^2 + 2) = \mathbb{R}_2[X].$$

Et on a bien une base comme la famille et graduée.

Et en particulier : $\operatorname{Im}(\varphi) \neq \mathbb{R}_3[X]$ donc φ n'est pas surjective.

- 4. On souhaite montrer que $\mathbb{R}_3[X] = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$:
 - (a) Soit $P \in \text{Ker}\varphi \cap \text{Im}\varphi$:
 - comme $P \in \text{Im}\varphi$, alors $P \in \mathbb{R}_2[X]$;
 - comme $P \in \text{Ker}\varphi$, alors $P = \lambda(X^3 9X)$ (pour $\lambda \in \mathbb{R}$).

Et pour des raisons de degré, on déduit que $\lambda = 0$ donc P = 0.

Et les espaces $Ker\varphi$ et $Im\varphi$ sont bien en somme directe.

- (b) Si $P = aX^3 + bX^2 + cX + d$, alors $Q = a(X^3 9X) \in \text{Ker}\varphi$ vérifie bien $\deg(P Q) \leq 2$.
- (c) Avec les mêmes notations, $P Q \in \mathbb{R}_2[X] = \operatorname{Im}\varphi$ donc il existe $R \in \operatorname{Im}\varphi$ tel que P = Q + R. Comme $Q \in \operatorname{Ker}\varphi$, cela prouve bien que $P \in \operatorname{Ker}\varphi + \operatorname{Im}\varphi$.

Et de ce point et de la 4)a) on déduit que $\mathbb{R}_3[X] = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$.

Avec les notations ci-dessus, on a :

$$P_1 = Q = a(X^3 - 9X)$$
 et $P_2 = R = P - Q = bX^2 + (c + 9a)X + d$.

(d) Avec les notations précédentes, on a : $\psi : P \mapsto P_1$. Et ainsi :

$$\forall a, b, c, d \in \mathbb{R}, \ \varphi(aX^3 + bX^2 + cX + d) = a(X^3 - 9X).$$

Partie II. Le cas général.

Dans toute cette partie, m est un paramètre réel. Soient $n \in \mathbb{N}^*$ et $\varphi : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ l'application définie par

$$\forall P \in \mathbb{R}_n[X], \ \varphi(P) = P'' + mXP' + P.$$

- 6. Ce sont les mêmes calculs qu'en question 1 (qui correspondait à n=3 et m=-1/3). On a :
 - linéarité : soient $P, Q \in \mathbb{R}_n[X]$ et $\lambda, \mu \in \mathbb{R}$. Par linéarité de la dérivation et bilinéarité du produit de polynômes :

$$\varphi(\lambda P + \mu Q) = (\lambda P + \mu Q)'' + mX(\lambda P + \mu Q)' + (\lambda P + \mu Q)$$

$$= \lambda(P'' + mXP' + P) + \mu(Q'' + mXQ' + Q) = \lambda\varphi(P) + \mu\varphi(Q)$$

ce qui prouve la linéarité;

— pour $P \in \mathbb{R}_n[X] : P' \in \mathbb{R}_{n-1}[X]$ donc $XP' \in \mathbb{R}_n[X]$. Et $P'' \in \mathbb{R}_{n-2}[X] \subset \mathbb{R}_n[X]$. Par structure d'espace vectoriel de $\mathbb{R}_n[X] : \varphi(P) \in \mathbb{R}_n[X]$.

Et finalement : $\varphi \in \mathcal{L}(\mathbb{R}_n[X])$.

- 7. Etude du noyau de φ .
 - (a) Il suffit de déterminer les coefficients de degré d de P'', mXP' et P, et de les additionner. Ces coefficients sont respectivement 0 (car degP'' < d), dma_d et d.

Et donc le coefficient de degré d de $\varphi(P)$ est $(dm+1)a_d$.

(b) En particulier, si $m \notin \{-1, -1/2, -1/3, \dots, -1/n\}$, alors pour tout $d \in [0; n]$, le coefficient de $\varphi(X^d)$ est $dm + 1 \neq 0$.

Mais on a également (même preuve que le fait que φ est à valeurs dans $\mathbb{R}_n[X]$) que $\varphi(X^d) \in \mathbb{R}_d[X]$. Et ainsi : $\deg(\varphi(X^d)) = d$.

En particulier, la famille $(\varphi(1), \varphi(X), \dots, \varphi(X^n))$ est graduée : c'est une base de $\mathbb{R}_n[X]$.

Et donc φ est une application linéaire de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$, telle que l'image d'une base (la base canonique) est une base (la famille des $\varphi(X^d)$) : elle est donc bijective.

8. Soit (E) l'équation différentielle

$$(E) : y''(x) + y(x) = Q(x)$$

où $Q \in \mathbb{R}[X]$ est fixé.

(a) On cherche à déterminer les solutions de l'équation :

$$\varphi(P) = Q$$

dans le cas où m=0. Mais on a $0 \notin \{-1,-1/2,-1/3,\ldots,-1/n\}$. Donc φ est bijective de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$: il suffit de prendre n suffisamment grand (plus grand que le degré de Q) pour avoir une unique solution $P \in \mathbb{R}_n[X]$.

Mais on a alors pour un tel P:

- c'est bien l'unique solution de degré inférieur ou égal à Q (c'est même l'unique solution de degré inférieur ou égal à n);
- si P est constant : P'' = 0 donc, comme P'' + P = P = Q, alors P = Q, donc P est de même degré que Q;
- sinon : $\deg(P'') < \deg(P)$ puis $\deg(P'' + P) = \deg(P)$ (cas d'égalité de degré dans une combinaison linéaire) puis $\deg(P) = \deg(Q)$.

Et c'est bien le résultat demandé.

Reste à montrer que c'est bien l'unique polynôme solution. On propose deux preuves. Dans les deux cas, on prend P_1, P_2 solutions :

- première méthode : avec les mêmes notations P_1, P_2, Q sont de même degré (inférieur ou égal à n) et vérifient $\varphi(P_1) = \varphi(P_2) = Q$ donc par injectivité de φ sur $\mathbb{R}_n[X]$ on a bien $P_1 = P_2$;
- seconde méthode : les solutions de (E) (polynomiales ou non) diffèrent d'une solution de l'équation homogène, donc une fonction de la forme $x \mapsto \lambda \cos(x) + \mu \sin(x)$. Donc :

$$\forall x \in \mathbb{R}, \ P_1(x) - P_2(x) = \lambda \cos(x) + \mu \sin(x)$$

et les fonction cos et sin n'étant pas polynomiales (elles sont bornées mais non constantes), on déduit $\lambda = \mu = 0$ donc $P_1 = P_2$.

ce qui prouve bien l'unicité.

(b) Notons P l'unique solution polynomiale de (E). Alors les solutions de E forment l'ensemble :

$$S = \{x \mapsto P(x) + \lambda \cos(x) + \mu \sin(x) \mid \lambda, \mu \in \mathbb{R}\}.$$

En posant $f: x \mapsto P(x) + \lambda \cos(x) + \mu \sin(x)$, l'unique solution au problème de Cauchy (E_0) vérifie :

$$P(0) + \lambda = 0$$
 et $P'(0) + \mu = 1$

donc $\lambda = -P(0)$ et $\mu = 1 - P'(0)$. Donc cette solution est :

$$x \mapsto P(x) - P(0)\cos(x) + (1 - P'(0))\sin(x).$$

Pour $Q = X^2$, on a $P = X^2 - 2$ puis l'unique solution cherchée est :

$$x \mapsto x^2 - 2 + 2\cos(x) + \sin(x).$$

- 9. On suppose réciproquement qu'il existe $d \in [1, n]$ tel que m = -1/d.
 - (a) On a directement:

$$\varphi(X^k) = k(k-1)X^{k-2} - \frac{1}{d}kX^k + X^k = \left(1 - \frac{k}{d}\right)X^k + k(k-1)X^{k-2}$$

qui est donc de degré k si $k \neq d$ et d-2 si $k=d \geqslant 2$, ou $-\infty$ si $k=d \leqslant 1$.

- (b) Et ainsi:
 - i. la famille $(\varphi(1), \ldots, \varphi(X^{d-1}))$ est graduée, donc est une base de $\mathbb{R}_{d-1}[X]$;
 - ii. comme $\deg(\varphi(X^d)) < d$, alors $\varphi(X^d) \in \mathbb{R}_{d-1}[X] = \operatorname{Vect}(\varphi(1), \dots, \varphi(X^{d-1}))$;
 - iii. par image d'une famille génératrice :

$$\operatorname{Im}\varphi = \operatorname{Vect}(\varphi(1), \dots, \varphi(X^{d-1}), \varphi(X^d), \varphi(X^{d+1}), \dots, \varphi(X^n))$$

Et par le point précédent :

$$\operatorname{Vect}(\varphi(1),\ldots,\varphi(X^{d-1}),\varphi(X^d),\varphi(X^{d+1}),\ldots,\varphi(X^n))$$

$$= \operatorname{Vect} \left(\varphi(1), \dots, \varphi(X^{d-1}), \varphi(X^{d+1}), \dots, \varphi(X^n) \right)$$

ce qui assure que la famille $(\varphi(1), \ldots, \varphi(X^{d-1}), \varphi(X^{d+1}), \ldots, \varphi(X^n))$ engendre $\operatorname{Im}\varphi$.

Comme elle est libre (famille échelonnée), c'est bien une base de $\text{Im}\varphi$.

- iv. L'application φ n'est ni injective, ni surjective, (ni donc bijective) :
 - non injectivité : l'image de la base $(1, X, \dots, X^n)$ est liée, donc elle n'est pas injective ;
 - non surjectivité : X^d n'a pas d'antécédent, car il n'est pas combinaison linéaire des $(\varphi(1), \ldots, \varphi(X^{d-1}), \varphi(X^{d+1}), \ldots, \varphi(X^n))$; en effet, pour des considérations de degré, une combinaison linéaire en les $\varphi(X^k)$ ne peut faire apparaître des k > d (qui sont de degré trop grand), donc il ne reste que des polynômes de degré strictement plus petit que d, donc impossible d'avoir X^d .
 - non bijectivité : elle n'est pas injective (par exemple) donc pas bijective ;

II.2 Problème 2 : Équation fonctionnelle

Si I est un intervalle de \mathbb{R} , on s'intéresse dans ce problème à l'existence (ou la non-existence) de fonctions $f: I \to I$ et $g: I \to I$ vérifiant l'équation

$$f \circ f = q$$
.

Partie I. Le cas où q est la fonction identité : des exemples.

1. Pour une telle fonction f, on a:

$$\forall x \in \mathbb{R}, \ f \circ f(x) = a(ax+b) + b = a^2x + (a+1)b$$

donc f est solution si, et seulement si, $a^2 = 1$ et (a+1)b = 0, c'est-à-dire :

$$(a,b) = (1,0)$$
 ou $a = -1$.

2. Pour une telle fonction f, on a:

$$\forall x \in \mathbb{R}, \ f \circ f(x) = (x^{\alpha})^{\alpha} = x^{\alpha^2}$$

donc f est solution si, et seulement si, $\alpha^2 = 1$, c'est-à-dire :

$$\alpha = \pm 1$$
.

3. Comme $f \circ f = id$, alors f est involutive, donc bijective, donc injective. En particulier, si elle est monotone, elle est strictement monotone. Elle est donc strictement croissante.

Par l'absurde, supposons qu'il existe $x \in \mathbb{R}$ tel que $f(x) \neq x$:

- si f(x) > x: alors par stricte croissance de f: f(f(x)) > f(x) donc x > f(x): contradiction;
- si f(x) < x: alors par stricte croissance de f: f(f(x)) < f(x) donc x < f(x): contradiction.

Et on a bien le résultat demandé.

Partie II. Le cas où q est la fonction identité : étude générale.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 vérifiant

$$(\star)$$
 $\forall x \in \mathbb{R}, (f \circ f)(x) = x.$

On suppose dans toute cette partie que f n'est pas la fonction $Id_{\mathbb{R}}$.

4. En dérivant l'égalité, on obtient par dérivée d'une composée :

$$\forall x \in \mathbb{R}, \ f'(x) \cdot f'(f(x)) = 1 \neq 0$$

et par règle du produit nul on obtient bien que f' ne s'annule pas.

5. Comme f est \mathcal{C}^1 , alors f' est continue.

Par contraposée du TVI, comme f' ne s'annule pas sur l'intervalle \mathbb{R} et y est continue, elle est de signe constant.

Mais, si f' était strictement positive, f serait strictement croissante, et on aurait $f = \mathrm{Id}_{\mathbb{R}}$ (par la question 3) ce qui est exclu.

Donc f' < 0 et f est strictement décroissante.

6. Comme $f \circ f = \mathrm{Id}_{\mathbb{R}}$, alors f est involutive : elle est bijective et est son propre inverse.

On déduit que le graphe de f est symétrique par rapport à la première bissectrice :

$$\forall x, y \in \mathbb{R}, \ (x, y) \in \mathcal{C}_f \Leftrightarrow (y, x) \in \mathcal{C}_f.$$

7. Comme f est strictement décroissante et continue (elle est \mathcal{C}^1 , elle réalise une bijection de \mathbb{R} dans $\lim_{x \to +\infty} f(x)$; $\lim_{x \to -\infty} f(x)$ [.

Mais on a vu que f réalise une bijection de \mathbb{R} dans \mathbb{R} .

Et ainsi:

$$\lim_{x \to +\infty} f(x) = -\infty \text{ et } \lim_{x \to -\infty} f(x) = +\infty.$$

8. On considère la fonction g = f - id:

- q est la somme de deux fonctions continues, donc est continue sur \mathbb{R} ;
- g est la somme des fonctions f et -id, toutes deux strictement décroissantes;
- g a pour limite $-\infty$ en $+\infty$ et $+\infty$ en $-\infty$ (d'après la question précédente, comme on n'a pas de FI);

Par théorème de la bijection monotone, elle réalise une bijection (strictement décroissante) de \mathbb{R} dans \mathbb{R}

En particulier, 0 possède un unique antécédent par g : c'est l'unique pour fixe de f.

On a : $f(\alpha) = \alpha$. Et en remplaçant dans l'égalité montrée en question 4 :

$$f'(\alpha) \cdot f'(f(\alpha)) = f'(\alpha)^2 = 1$$

donc $f'(\alpha) = \pm 1$. Mais on a vu que f' < 0. Donc $f'(\alpha) = -1$.

- 9. Un exemple. On procède par Analyse–Synthèse :
 - Analyse : pour une telle fonction, notons déjà que $f|_{\mathbb{R}^*_-}: x \mapsto e^{-x} 1$ réalise une bijection de \mathbb{R}^*_- dans \mathbb{R}^*_+ .

Par continuité de f en 0, on a aussi f(0) = 0 = h(0).

Par caractère bijectif de f: si x > 0, alors f(x) < 0. Et donc:

$$x = f(f(x)) = \exp(-f(x)) - 1 = \exp(-h(x)) - 1$$

et en composant avec ln on trouve : $h(x) = -\ln(x+1)$.

Donc nécessairement : $h: x \mapsto -\ln(x+1)$.

— Synthèse : soit f définie par :

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = \begin{cases} e^{-x} - 1 & \text{si } x < 0 \\ -\ln(x+1) & \text{si } x \geqslant 0 \end{cases}$$

Alors:

- f est \mathcal{C}^1 sur \mathbb{R}^* par composée (en regardant séparément les deux expressions);
- en 0, f est continue car : $f(0) = 0 = \lim_{x \to 0} e^{-x} 1 = \lim_{x \to 0} -\ln(x+1)$;
- f est dérivable sur \mathbb{R}^* avec :

$$f': \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = \begin{cases} -e^{-x} & \text{si } x < 0 \\ -\frac{1}{1+x} & \text{si } x > 0 \end{cases}$$

et comme $\lim_{x\to 0} -e^{-x} = -1 = \lim_{x\to 0} -\frac{1}{1+x}$, on déduit par théorème de la limite de la dérivée que f est dérivable en 0 avec f'(0) = -1, et que f' est continue en 0.

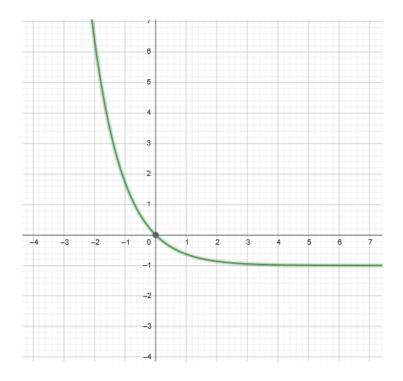
Et ainsi f est \mathcal{C}^1 sur \mathbb{R} .

Et f vérifie bien $f \circ f = \mathrm{Id}_{\mathbb{R}}$ car pour tout $x \in \mathbb{R}$:

- si
$$x \ge 0$$
: $f(f(x)) = f(-\ln(1+x)) = e^{\ln(1+x)} - 1 = (1+x) - 1 = x$;

— si
$$x < 0$$
: $f(f(x)) = f(e^{-x} - 1) = h(e^{-x} - 1) = -\ln(1 + e^{-x} - 1) = -\ln(e^{-x}) = x$.

On a le graphe suivant:



Partie III. Un exemple de non-existence (Oral X PC).

10. Un point fixe de cos est solution de l'équation $x = \cos(x)$, donc nécessairement dans [-1; 1]. Cherchons donc les points fixes de cos sur [-1; 1[. On pose $g = \cos - \mathrm{id}$. Par combinaison linéaire, g est dérivable sur [-1; 1] avec : $g' = -\sin - 1 < 0$ (car la fonction sin ne prend jamais la valeur -1 sur $[-1; 1] \subset [-\pi/2 : \pi/2[)$. Donc g est strictement décroissante sur [-1; 1], avec :

$$g(^{0}) = \cos(0) - (0) = \cos(0) = 1 > 0 \text{ et } g(1) = \cos(1) - 1 \le 0$$

donc par corollaire du théorème des valeurs intermédiaires, la fonction g étant continue, elle s'annule une unique fois sur $]0;1] \subset]0;\pi/2[$. Son unique point d'annulation est l'unique point fixe de cos (sur $]0;\pi/2[$ donc sur \mathbb{R}).

11. Par l'absurde, supposons que $f \mathcal{C}^1$ est solution.

Notons déjà que, comme $f \circ f(\alpha) = \cos(\alpha) = \alpha$, alors en composant avec f on a :

$$f\circ f\circ f(\alpha)=f\circ f\left(f(\alpha)\right)=\cos(f(\alpha))=f(\alpha)$$

donc $f(\alpha)$ est un point fixe de cos. Par unicité, on a $f(\alpha) = \alpha$.

Dérivons l'égalité vérifiée par f:

$$\forall x \in \mathbb{R}, \ f'(x) \cdot f'(f(x)) = -\sin(x)$$

et en évaluant en α :

$$f'(\alpha) \cdot f'(f(\alpha)) = f'(\alpha)^2 = -\sin(\alpha)$$

où $\alpha \in]0; \pi/2[$ donc $-\sin(\alpha) < 0.$

D'où la contradiction avec le fait que $f'(\alpha)^2 \ge 0$.