$DM n^{o}5$

Pour tout le problème, on considère E un \mathbb{R} -espace vectoriel de dimension 3. On note 0 aussi bien la matrice nulle que l'endomorphisme nul, le vecteur nul ou le scalaire nul (s'il n'y a pas d'ambiguïté).

I Endomorphismes nilpotents en dimension 3

- 1. Soit $u \in \mathcal{L}(E)$. On fixe $i, j \in \mathbb{N}$. On pose v l'application définie sur $\operatorname{Ker} u^{i+j}$ par $v : x \mapsto u^j(x)$.
 - (a) Justifier que v est linéaire.
 - (b) Montrer que $\operatorname{Im} v \subset \operatorname{Ker} u^i$. L'application v est-elle un endomorphisme de $\operatorname{Ker} u^{i+j}$?
 - (c) Montrer que $Ker v \subset Ker u^j$.
 - (d) En déduire que : $\dim (\operatorname{Ker} u^{i+j}) \leq \dim (\operatorname{Ker} u^i) + \dim (\operatorname{Ker} u^j)$.
- 2. Soit $u \in \mathcal{L}(E)$ tel que $u^3 = 0$. Montrer que $\operatorname{rg}(u) \leqslant 2$. Que penser du cas où $\operatorname{rg}(u) = 0$?
- 3. Soit $u \in \mathcal{L}(E)$ tel que $u^3 = 0$ et rg(u) = 2.
 - (a) En utilisant la question 1, montrer que : dim $(\text{Ker}u^2) = 2$ ou 3.
 - (b) Montrer que $\operatorname{Ker} u^2 \neq E$, et en déduire la dimension de $\operatorname{Ker} u^2$. Indication : on pourra procéder par l'absurde.
 - (c) Montrer qu'il existe $x \in E$ tel que $(u^2(x), u(x), x)$ est une base de E.
 - (d) Écrire dans cette base la matrice U de u et la matrice V de $u^2 u$.
- 4. Soit $u \in \mathcal{L}(E)$ tel que $u^3 = 0$ et $\operatorname{rg}(u) = 1$.
 - (a) On veut montrer que $u^2 = 0$. Par l'absurde, on suppose $u^2 \neq 0$.
 - i. Montrer qu'il existe $x \in E$ tel que $(x, u(x), u^2(x))$ est libre. Que penser de la famille $(u(x), u^2(x))$?
 - ii. Conclure.
 - (b) Montrer que l'on peut trouver $b \in E$ tel que $u(b) \neq 0$.
 - (c) Justifier qu'il existe $c \in \text{Ker} u$ tel que (u(b), c) est une base de Keru. Et en déduire que (b, u(b), c) est une base de E.
 - (d) Écrire dans cette base la matrice U de u et la matrice V de $u^2 u$.

II Une matrice unipotente de taille 3×3 est semblable à son inverse

On considère pour cette partie $A \in \mathcal{M}_3(\mathbb{R})$. On suppose que A est semblable à $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ pour

 $\alpha, \beta, \gamma \in \mathbb{R}$ fixés. Et on note $N = T - I_3 = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$ et $P \in GL_3(\mathbb{R})$ telle que $P^{-1}AP = T = I_3 + N$.

- 5. Montrer que A est inversible.
- 6. Calculer N^3 est montrer que : $A^{-1} = P(I_3 N + N^2) P^{-1}$.
- 7. On suppose à cette question que N=0. Montrer que A et A^{-1} sont semblables. Que valent-elles?
- 8. On suppose ici que $\operatorname{rg}(N) = 2$. On pose $M = N^2 N$.
 - (a) En utilisant la question 3, montrer que N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, et en déduire une matrice semblable à M.

- (b) Calculer M^3 et déterminer $\operatorname{rg}(M)$. En déduire une matrice semblable à M.
- (c) Montrer que M et N sont semblables.
- (d) Montrer que A et A^{-1} sont semblables.
- 9. On suppose ici que rg(N) = 1. On pose $M = N^2 N$. Montrer que A et A^{-1} sont semblables.
- 10. On se propose de traiter un exemple. On suppose que $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$. On note (a,b,c) la base canonique de \mathbb{R}^3 , et $u \in \mathcal{L}(\mathbb{R}^3)$ l'application linéaire canoniquement associée à A.
 - (a) Donner l'expression de u(x, y, z) pour $x, y, z \in \mathbb{R}$.
 - (b) Montrer que $\operatorname{Ker}(u-\operatorname{id})$ est un sous-espace vectoriel de \mathbb{R}^3 de dimension 2, et en donner une base (que l'on notera (e_1,e_2)).
 - (c) Justifier que (e_1, e_2, c) est une base de \mathbb{R}^3 , et écrire la matrice de u dans cette base.
 - (d) Montrer que A et A^{-1} sont semblables.