Ecole Polytechnique Formation préparatoire

feuille n°4 - Topologie.

I. Espaces métriques.

Exercice 1. Soit (X, d) un espace métrique. Soit $A \subset X$. On rappelle que l'adhérence \overline{A} de A est le plus petit fermé contenant A.

Montrer que les assertions suivantes sont équivalentes :

- (i) $a \in \overline{A}$
- (ii) pour tout $\epsilon > 0$ alors $B(a, \epsilon) \cap A \neq \emptyset$
- (iii) il existe une suite $(x_n)_n$ d'éléments de A qui converge vers a.

Exercice 2. (i) Montrer que dans un compact une suite ayant une unique valeur d'adhérence est convergente.

(ii) Donner un exemple de suite dans \mathbb{R} ayant une unique valeur d'adhérence mais qui ne converge pas.

Exercice 3. Soit (X, d) un espace métrique. Pour F et G deux parties de X et $x \in X$, on pose $d(x, F) = \inf_{y \in F} d(x, y)$ et $d(F, G) = \inf_{y \in G} d(F, y)$.

- (i) Montrer que $x \to d(x, F)$ est 1-Lipshitzienne.
- (ii) Montrer que d(x, F) = 0 si et seulement si $x \in \overline{F}$.
- (iii) En déduire que si F_1 et F_2 sont deux fermés disjoints, il existe deux ouverts disjoints U_1 et U_2 vérifiant $F_1 \subset U_1$ et $F_2 \subset U_2$.
 - (iv) Soit F_1 un fermé et F_2 un compact tels que $F_1 \cap F_2 = \emptyset$. Montrer que $d(F_1, F_2) \neq 0$.
 - (v) Donner des exemples dans \mathbb{R} et \mathbb{R}^2 de deux fermés disjoints dont la distance est nulle.

Exercice 4. Soit (X, d) un espace métrique et K une partie compacte de X. On considère une application f de K dans K contractante, c'est-à-dire si $x \neq y$ alors d(f(x), f(y)) < d(x, y).

- (i) Montrer que la fonction g(x) = d(x, f(x)) atteint son minimum en un point x_0 .
- (ii) Montrer que $g(x_0) = 0$.
- (iii) Montrer que f a un unique point fixe.

II. Espaces vectoriels normés.

Exercice 5. Pour $u=(x,y)\in\mathbb{R}^2$, on définit les normes suivantes

$$N_1(u) = |x| + |y|$$
 $N_2(u) = \sqrt{x^2 + y^2}$ $N_{\infty}(u) = \sup(|x|, |y|)$

Comparer $N_1(u)$, $N_2(u)$ et $N_{\infty}(u)$.

Pour chacune de ces normes, dessiner la boule fermée de centre 0 et de rayon 1.

Exercice 6. On considère l'espace des matrices $M_n(\mathbb{R})$ à n lignes et n colonnes sur \mathbb{R} . Pour $A = (a_{i,j})_{i,j}$. On définit la norme N sur $M_n(\mathbb{R})$ par $N(A) = \sup_{i,j} |a_{i,j}|$.

Comparer N(AB) avec N(A)N(B). En déduire une norme N' vérifiant $N'(AB) \leq N'(A)N'(B)$.

Exercice 7. On considère $M_n(\mathbb{C})$ muni d'une norme $\| \|$. Soit \mathcal{D} l'ensemble des matrices diagonalisables de $M_n(\mathbb{C})$.

- 1. Montrer que $GL(n,\mathbb{C})$ est un ouvert dense de $M_n(\mathbb{C})$.
- 2. Montrer que, pour A et B dans $M_n(\mathbb{C})$, les matrices AB et BA ont même polynôme caractéristique.
- 3. Montrer que \mathcal{D} est dense dans $M_n(\mathbb{C})$.
- 4. Montrer le théorème de Cayley-Hamilton : pour tout $A \in M_n(\mathbb{C})$ de polynôme caractéristique C_A alors $C_A(A) = 0$.

III. Applications linéaires continues.

Exercice 8. Soit E un \mathbb{R} espace vectoriel muni d'une norme $\| \|$. Soit $f \in E^*$ une forme linéaire non nulle.

- 1) Montrer qu'il existe $a \in E$ tel que $\ker(f) \oplus \mathbb{R}a = E$.
- 2) Montrer que si f est continue alors ker(f) est fermé.
- 3) On suppose que ker(f) est fermé.
 - a) Montrer qu'il existe r > 0 tel que $B(0,r) \cap f^{-1}(\{1\}) = \emptyset$.
 - b) Montrer que, pour tout $x \in B(0,r)$, on a |f(x)| < 1
 - c) En déduire que f est continue.
- 4) On suppose que f est continue. Montrer que pour tout $x \in E$, on a $|f(x)| = ||f|| \cdot d(x, \ker(f))$.
- 5) Montrer que si f n'est pas continue alors ker(f) est dense dans E.

Exercice 9. Soit (E, || ||) un espace vectoriel normé. Soit $u \in \text{End}(E)$ tel que $||u|| \leq 1$.

- 1. Montrer que $ker(u id) = ker(u id)^2$.
- 2. Montrer que $E = \ker(u id) \oplus \operatorname{Im}(u id)$.
- 3. Montrer que la suite $\frac{1}{n}(1+u+\ldots+u^{n-1})$ converge vers un projecteur sur $\ker(u-\mathrm{id})$.

Exercice 10. Soit $E = \mathbb{R}[X]$ muni de la norme $\|\sum_i a_i X^i\| = \sum_i |a_i|$.

- 1) L'application $\phi: P(X) \mapsto P(X+1)$ est-elle continue?
- 2) Soit $A \in E$. L'application $\Psi_A : P \mapsto AP$ est-elle continue?
- 3) Reprendre les questions précédentes avec la norme $||P|| = \sup_{t \in \mathbb{R}} \{e^{-|t|}|P(t)|\}.$

IV. Espaces de fonctions - Complétude - Densité.

Exercice 11. Soit $E = \mathcal{C}^0([-1,1],\mathbb{R})$ l'espace des fonctions continues de [-1,1] dans \mathbb{R} . Pour $f \in E$, on pose $||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|$ et $||f||_1 = \int_{-1}^1 |f(t)| dt$.

- 1) Vérifier que $\| \|_{\infty}$ et $\| \|_{1}$ sont des normes pour E.
- 2) Montrer que, pour $f \in E$, on a $||f||_1 \le 2||f||_{\infty}$.
- 3) Construire une suite de fonctions $(f_n)_n$ telle que $\lim_{n\to+\infty} ||f_n||_{\infty} = +\infty$ et la suite $(||f_n||_1)_n$ est bornée. En déduire que les normes $|| ||_{\infty}$ et $|| ||_1$ ne sont pas équivalentes.

Exercice 12. Soit $E = \mathcal{C}^0([-1,1],\mathbb{R})$ l'espace des fonctions continues de [-1,1] dans \mathbb{R} . Pour $f \in E$, on pose $||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|$ et $||f||_1 = \int_{-1}^1 |f(t)| dt$.

- 1) $(E, || ||_{\infty})$ est-il complet?
- 2) $(E, || ||_1)$ est-il complet?
- 3) Soit $F = \mathcal{C}^1([-1,1],\mathbb{R})$ le sous-espace de E formé des fonctions de classe \mathcal{C}^1 . En utilisant la suite de fonctions $(f_n)_n$ définies par $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, montrer que F n'est pas complet pour $\|\cdot\|_{\infty}$. Donner une norme simple N sur F pour laquelle F est complet.

Exercice 13. Soit $f \in \mathcal{C}^1([0,1],\mathbb{R})$. Montrer que

$$\lim_{n \to +\infty} n \int_0^1 e^{-nx} f(x) dx = f(0).$$

En utilisant un argument de densité, montrer le même résultat en supposant seulement $f \in \mathcal{C}^0([0,1],\mathbb{R})$.

Exercice 14. Théorème du point fixe

Soit E un espace vectoriel muni d'une norme $\| \|$. On suppose que E est complet. Soit k un réel strictement positif. On rappelle qu'une fonction $f: E \to E$ est k-Lipschitzienne si pour tout x, y dans E, on a

$$||f(x) - f(y)|| \le k||x - y||$$

On suppose que f est k-Lipschitzienne avec k < 1.

Soit $x_0 \in E$, et $(x_n)_n$ la suite définie par récurrence en posant $x_{n+1} = f(x_n)$. Montrer que la suite $(x_n)_n$ converge. En déduire que f admet un unique point fixe dans E.

Exercice 15. Théorème de Riesz

Soit E un espace vectoriel normé. Soit $\overline{B}=\{x\in E,\|x\|\leq 1\}$ la boule unité fermée de E. On suppose que \overline{B} est compacte.

1) Montrer qu'il existe une famille finie de vecteurs $x_1, x_2, \dots x_k$ telle que $\overline{B} \subset \bigcup_{1 \leq j \leq k} B(x_j, 1/2)$.

Soit F l'espace vectoriel engendré par $x_1, x_2, \dots x_k$.

- 2) On fixe un point arbitraire $x \in \overline{B}$. Construire par récurrence sur $n \in \mathbb{N}$, une suite (y_n) de F telle que, pour tout $n \in \mathbb{N}$, on ait $||x y_n|| \le 2^{-n}$.
 - 3) En déduire que E est de dimension finie.

V. Espaces préhilbertiens.

Exercice 16. Soit $E = \mathcal{C}^0([0, 2\pi], \mathbb{R})$ muni de la norme $\| \|_2$ définie par $\|f\|_2 = \Big(\int_0^{2\pi} |f(t)|^2 dt\Big)^{1/2}$. Pour $n \in \mathbb{N}$, on pose $f_n(x) = \cos(nx)$.

- 1) Calculer $||f_n f_p||_2$ pour $n, p \in \mathbb{N}$.
- 2) En déduire que la boule fermée $\overline{B}(0,1)$ n'est pas compacte.

Exercice 17. Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$. Pour f et g dans E, on pose $(f,g) = \int_0^1 f(t)g(t)dt$.

- 1) Vérifier que (,) est produit scalaire sur E. On note $\| \|$ la norme associée.
- 2) Soit F l'espace des fonctions polynomiales sur [0,1].
 - a) Montrer qu'il existe une suite $(f_n)_n$ de F qui converge vers la fonction $g(x) = e^x$ dans E.
 - b) En déduire que F n'a pas de supplémentaire orthogonal.

VI. Connexité.

Exercice 18. Montrer les propriétés suivantes :

- (1) l'union de deux connexes d'intersection non vide est connexe.
- (2) les connexes de \mathbb{R} sont les intervalles (ouverts ou fermés ou semi-ouverts avec bornes finies ou infinies).
- (3) L'image d'un connexe par une application continue est connexe.

Exercice 19. (Théorème des valeurs intermédiaires) Soit $f : [a, b] \to \mathbb{R}$ une fonction continue telle que f(a)f(b) < 0.

Montrer qu'il existe $x \in [a, b]$ tel que f(x) = 0.

Exercice 20. a) Soit $n \geq 2$. Soit U est un ouvert connexe de \mathbb{R}^n et $x \in U$. Montrer que $U \setminus \{x\}$ est connexe.

b) Montrer que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.