Ecole Polytechnique Formation préparatoire

feuille n°1- Algèbre linéaire

Exercice 1. Soit E et F deux espaces vectoriels de dimension finie. Soit f une application linéaire de E dans F. Montrer que

$$dim \ Im f + dim \ Ker \ f = dim \ E$$

Exercice 2. Soit V un espace vectoriel de dimension n et $f \in End(V)$. Montrer que les assertions suivantes sont équivalentes :

- 1. $Ker(f) \oplus Im(f) = V$,
- 2. $Im(f) = Im(f^2),$
- 3. $Ker(f) = Ker(f^2)$.

Exercice 3. Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que les suites (u_n) et (v_n) définies par

$$u_n = dim(\operatorname{Im} f^n) - dim(\operatorname{Im} f^{n+1}),$$

$$v_n = dim\left(\operatorname{Ker} f^{n+1}\right) - dim\left(\operatorname{Ker} f^n\right),$$

sont des suites positives, décroissantes qui tendent vers 0.

Exercice 4. Soit $\mathbb{C}_n[X]$ l'espace vectoriel des polynômes à coefficients dans \mathbb{C} de degré inférieur ou égal à n. On considère l'application linéaire φ qui à $P(X) \in \mathbb{C}_n[X]$ associe P(X+1) - P(X).

Déterminer son noyau $Ker(\varphi)$ et son image $Im(\varphi)$.

Exercice 5. Soient f et g deux applications linéaires de \mathbb{R}^n dans \mathbb{R} . Montrer que

$$(a)$$
 $Ker(f) = Ker(g)$ (égalité des noyaux)

si et seulement si

(b) il existe
$$\lambda \in \mathbb{R}, \lambda \neq 0$$
 tel que $f = \lambda g$.

Exercice 6. Soit
$$m \in \mathbb{R}$$
 et $A(m) = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{pmatrix}$

- 1. Déterminer le polynôme caractéristique et le polynôme minimal de A(m).
- 2. Pour quelles valeurs de m la matrice A(m) est-elle diagonalisable?
- 3. Lorsque A(m) est diagonalisable, trouver une matrice P inversible et une matrice diagonale D telles que $A(m) = PDP^{-1}$.

Exercice 7. Montrer que la matrice $M(a) = \begin{pmatrix} 2 & 0 & 1-a \\ -1 & 1 & a-1 \\ a-1 & 0 & 2a \end{pmatrix}$ est diagonalisable si et seulement si a=1. Dans ce cas trouver P tel que $P^{-1}M(1)P$ soit une matrice diagonale que l'on déterminera.

Exercice 8. Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n. Soient a_0, a_1, \ldots, a_n des nombres réels deux à deux distincts. Pour $j \in \{0, \ldots, n\}$, on note $\varphi_j \in E^*$ définie par $\varphi_j(P) = P(a_j)$.

- 1. Montrer que $(\varphi_0, \ldots, \varphi_n)$ est une base de E^* .
- 2. Trouver la base $(P_0, P_2, \dots P_n)$ de E dont la base duale est $(\varphi_0, \dots, \varphi_n)$.

Exercice 9. Soit V un espace vectoriel de dimension d sur \mathbb{C} et f un endomorphisme de V. On note C_f son polynôme caractéristique.

I. Soit v un vecteur non nul de V. Soit n le plus grand entier tel que la famille $(v, f(v), \ldots, f^{n-1}(v))$ soit libre. On note W le sous-espace vectoriel engendré par cette famille et on pose

$$f^{n}(v) = a_{0}v + a_{1}f(v) + \dots + a_{n-1}f^{n-1}(v).$$

- 1. Montrer que W est stable par $f(c'\text{est-\`a}\text{-dire }f(W)\subset W)$. On note alors f_W la restriction de f \grave{a} W.
- 2. Quel est le polynôme caractéristique C_{f_W} de $f_W\,?$
- 3. Montrer que $C_{f_W}(f_W) = 0$.
- 4. Montrer que C_{f_W} divise C_f .
- II. Déduire de la première partie que $C_f(f) = 0$ (Théorème de Cayley-Hamilton).

Exercice 10. Soit V un espace vectoriel de dimension n. Soient f et g deux endomorphismes diagonalisables de V qui commutent (c'est-à-dire $f \circ g = g \circ f$).

- 1. Soit E un sous-espace propre de f. Montrer que E est stable par g (c'est-à-dire $g(E) \subset E$).
- 2. Montrer que la restriction de q à E est un endomorphisme diagonalisable de E.
- 3. Montrer que f et g sont diagonalisables dans une même base.
- 4. (difficile) Soit $(f_i)_{i\in I}$ une famille d'endomorphismes diagonalisables de V. On suppose que les f_i commutent deux à deux.

Montrer par récurrence sur dim(V) que les f_i , pour $i \in I$, sont diagonalisables dans une même base.

Exercice 11. Soit G un sous-groupe fini de $GL(n,\mathbb{R})$. On suppose que tout élément A de G satisfait $A^2 = I_n$ où I_n est la matrice identité.

Montrer que G a au plus 2^n éléments.

Exercice 12. Soit V un espace vectoriel de dimension n et f un endomorphisme de V.

- 1. Montrer que f est nilpotent (c'est-à-dire qu'il existe $r \in \mathbb{N}^*$ tel que $f^r = 0$) si et seulement si son polynôme caractéristique est $P(T) = (-T)^n$.
- 2. On suppose que f est nilpotent et $f^{n-1} \neq 0$.
 - (a) Montrer qu'il existe $v \in V$ tel que $v, f(v), f^2(v), \dots, f^{n-1}(v)$ soit une base de E.
 - (b) Ecrire la matrice de f dans la base $(v, f(v), f^2(v), \dots, f^{n-1}(v))$. En déduire le rang de f.
 - (c) Montrer que g commute à f si et seulement si, il existe un polynôme $P \in \mathbb{R}[X]$ tel que g = P(f).

- 3. On suppose que f est nilpotent, de rang n-1. Soit $V_0 = \operatorname{Im}(f)$. Montrer que $f(V_0) \subset V_0$. Soit f_0 l'endomorphisme de V_0 induit par f (c'est-dire $f_0 : V_0 \to V_0$ est défini par $f_0(v) = f(v)$ pour $v \in V_0$). Montrer que f_0 est nilpotent, de même noyau que f, et de rang n-2.
- 4. On suppose que f est nilpotent. En raisonnant par récurrence sur $\dim V$, montrer que les assertions suivantes sont équivalentes :
 - (a) $f^{n-1} \neq 0$
 - (b) Il existe un vecteur v de V tel que $(v, f(v), f^2(v), \dots, f^{n-1}(v))$ soit une base de V.
 - (c) le rang de f est n-1.

Exercice 13. Soit \mathbb{H} l'ensemble des matrices de la forme $\begin{pmatrix} x & -y \\ \bar{y} & \bar{x} \end{pmatrix}$ où x et y sont des nombres complexes et \bar{x} , \bar{y} leur conjugué.

Montrer que la somme et le produit de deux matrices dans $\mathbb H$ est encore dans $\mathbb H$. Montrer aussi que $\mathbb H$ est stable par multiplication par un nombre réel. En déduire que $\mathbb H$ est un espace vectoriel réel.

Vérifier qu'une base de H est donnée par

$$I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad u = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right) \quad v = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \quad w = \left(\begin{array}{cc} 0 & -i \\ -i & 0 \end{array}\right)$$

avec $u^2 = v^2 = w^2 = -I$, uv = -vu = w.

Calculer le polynôme caractéristique et le polynôme minimal d'un élément de H.

Montrer que tout élément non nul de \mathbb{H} est inversible, et que son inverse est encore dans \mathbb{H} . En déduire que \mathbb{H} est un corps (non commutatif).

Exercice 14. Soit $A \in M_n(\mathbb{R})$ et $\varphi : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par $\varphi(M) = AM$.

- 1. Montrer que, si A est diagonalisable alors φ est diagonalisable.
- 2. Soit X_0 un vecteur propre pour A et M_0 un vecteur propre pour φ . Montrer que si $M_0X_0 \neq 0$ alors M_0X_0 est un vecteur propre de A.
- 3. Soit $M_1, \ldots M_{n^2}$ une base de $M_n(\mathbb{R})$ et X un vecteur non nul de \mathbb{R}^n . Montrer que pour tout $Y \in \mathbb{R}^n$, il existe $B \in M_n(\mathbb{R})$ tel que Y = BX. En déduire que $M_1X, \ldots M_{n^2}X$ engendrent \mathbb{R}^n .
- 4. Montrer que, si φ est diagonalisable alors A est diagonalisable.