Feuille d'exercices n°17 : Polynômes

Exercice 1 [Équations en les polynômes]

Résoudre les équations suivantes, d'inconnues $P, Q \in \mathbb{K}[X]$:

1.
$$Q^2 = XP$$
;

2.
$$P \circ P = P$$
:

3.
$$P(X^2) = (X^2 + 1)P(X)$$
.

Exercice 2 [Valeurs d'un polynôme sur U]

On considère $P = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{C}[X]$, et on pose $M = \sup |P(z)|$.

- 1. Soient $\omega = e^{2i\pi/(n+1)}$ et $k \in \{0,\ldots,n\}$. Montrer que : $P(1) + \omega^{-k}P(\omega) + \cdots + \omega^{-nk}P(\omega^n) = (n+1)a_k$.
- 2. En déduire que, pour tout $k \in \{0, ..., n\} : |a_k| \leq M$.

Exercice 3 [Une suite de polynômes]

Calculer les coefficients de degré 0, 1, 2 des polynômes P_n , pour $n \in \mathbb{N}^*$, définis par :

$$P_1 = X - 1$$
 et $\forall n \in \mathbb{N}^*, \ P_{n+1} = P_n^2 - 2$.

Exercice 4 [Équations en des polynômes et leurs dérivées]

Résoudre les équations suivantes, d'inconnue $P \in \mathbb{K}[X]$:

1.
$$P'^2 = 4P$$
;

2.
$$(X^2 + 1)P'' - 6P = 0$$
.

Exercice 5 [Taylor à l'envers]

Si
$$P \in \mathbb{K}[X]$$
, montrer que : $P(X+1) = \sum_{n=0}^{+\infty} \frac{1}{n!} P^{(n)}(X)$.

Exercice 6 [Parité de polynômes]

On dit qu'il polynôme est **pair** (resp. **impair**) si P(-X) = P(X) (resp. P(-X) = -P(X)).

1. Montrer que, pour $P = \sum a_k X^k$, on a les équivalences :

$$P \text{ pair } \Leftrightarrow \forall k \in \mathbb{N}, \ a_{2k+1} = 0 \Leftrightarrow \forall k \in \mathbb{N}, \ P^{(2k+1)}(0) = 0.$$

- 2. Donner une équivalence analogue pour les polynômes impairs.
- 3. Montrer que P est pair (resp. impair) si, et seulement si : $\forall k \in \mathbb{N}, P(k) = P(-k)$. La même condition est-elle valable pour une fonction quelconque?

Exercice 7 [Divisibilités de polynômes]

Montrer que l'on a les relations de divisibilité suivantes et calculer les quotients correspondants :

1.
$$(X-1)|(X^3-2X^2+3X-2)$$
; 2. $(X-2)|(X^3-3X^2+3X-2)$; 3. $(X+1)|(X^3+3X^2-2)$.

2.
$$(X-2)|(X^3-3X^2+3X-2)|$$

3.
$$(X+1)|(X^3+3X^2-2)$$
.

Exercice 8 [Quelques divisibilités]

On considère $P \in \mathbb{K}[X]$.

1. Montrer que P(X) - X divise P(P(X)) - P(X).

- 2. Déduire que P(X) X divise P(P(X)) X.
- 3. Plus généralement, si $n \in \mathbb{N}^*$ et que $Q = \underbrace{P \circ \cdots \circ P}_{n \text{ fois}}$, montrer que P(X) X divise Q(X) X.

Exercice 9 [Divisibilité, division et racines]

Soit $n \in \mathbb{N}^*$. En utilisant le lien avec les racines de polynômes :

- 1. Montrer que $(X-1)^3$ divise $nX^{n+2} (n+2)X^{n+1} + (n+2)X n$;
- 2. Donner la multiplicité de 1 comme racine de $nX^{n+1} (n+1)X^n + 1$.
- 3. Déterminer le reste de la division euclidienne de $X^n(X+1)^2$ par (X+1)(X-2).
- 4. Déterminer pour quelles valeurs de n le polynôme $(X-1)^n X^n + 2X 1$ est divisible par $2X^3 3X^2 + X$.

Exercice 10 [Un critère de primalité relative]

Soient $A, B \in \mathbb{K}[X]$. Montrer que A et B sont premiers entre eux si, et seulement si, AB et A + B le sont.

Exercice 11 [Unicité de la division euclidienne]

Pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$, calculer le reste de la division euclidienne de $(\cos(t) + X\sin(t))^n$ par $X^2 + 1$. Plus généralement, si $a_1, \ldots, a_n \in \mathbb{R}$, calculer le reste de la division euclidienne de $\prod_{k=1}^n (\cos(a_k) + X\sin(a_k))$ par $X^2 + 1$.

Exercice 12 [Arithmétique et racines de l'unité]

Soient $a, b \in \mathbb{N}^*$.

- 1. Soit r le reste de la division euclidienne de a par b. Montrer que le reste de la division euclidienne de X^a par $X^b 1$ est X^r .
- 2. En déduire que : $a|b \Leftrightarrow X^a 1|X^b 1$.
- 3. Plus généralement, montrer que : $\operatorname{PGCD}(X^a-1,X^b-1)=X^{a\wedge b}-1$.
- 4. On suppose que $a \wedge b = 1$. Montrer que : $(X^a 1)(X^b 1)$ divise $(X^{ab} 1)(X 1)$. Le résultat est-il vrai si a et b ne sont plus supposés premiers entre eux?

Exercice 13 [Somme de deux carrés dans $\mathbb{R}[X]$]

On pose $\Sigma = \{A^2 + B^2 \mid (A, B) \in \mathbb{R}[X]\}$ l'ensemble des sommes de carrés de polynômes réels.

- 1. Montrer que Σ est stable par produit (on pourra utiliser des polynômes complexes bien choisis).
- 2. Montrer que, si $P \in \Sigma$, alors : $\forall x \in \mathbb{R}, P(x) \geq 0$.
- 3. Inversement, soit $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}, P(x) \geq 0$:
 - (a) Montrer que toutes les racines réelles de P sont d'ordre de multiplicité pair.
 - (b) À l'aide de la factorisation en irréductibles, en déduire que $P \in \Sigma$.

Exercice 14 [Pgcd dans les polynômes et dans les entiers]

Soient P, Q deux polynômes à coefficients dans \mathbb{Z} qu'on suppose premiers entre eux. Pour $n \in \mathbb{N}$, on pose : $u_n = P(n) \wedge R(n)$.

Montrer que (u_n) est bornée.

Exercice 15 [Bézout amélioré]

Si $A, B \in \mathbb{K}[X]$ sont non constants et premiers entre eux, montrer qu'il existe un **unique** couple $(U, V) \in \mathbb{K}[X]^2$ tel que :

$$AU + BV = 1$$
 et
$$\begin{cases} \deg U < \deg B \\ \deg V < \deg A \end{cases}$$
.

Exercice 16 [Absence de Bézout]

Soit $A, B \in \mathbb{K}[X]$ non nuls. Montrer que A et B ne sont pas premiers entre eux si, et seulement si, il existe $U, V \in \mathbb{K}[X]$ non nuls tels que :

$$AU + BV = 0$$
, $\deg U < \deg B$ et $\deg V < \deg A$.

Exercice 17 [Une application sur les polynômes]

En utilisant les deux exercices précédents, montrer que si $A, B \in \mathbb{K}[X]$ non constants, avec $p = \deg(A)$ et $q = \deg(B)$, alors l'application :

$$\Phi: \left\{ \begin{array}{ccc} \mathbb{K}_{q-1}[X] \times \mathbb{K}_{p-1}[X] & \to & \mathbb{K}_{p+q-1}[X] \\ (U,V) & \mapsto & AU + BV \end{array} \right.$$

est bijective si, et seulement si, A et B sont premiers entre eux.

Exercice 18 [Divisibilité dans les puissances]

Soient $A, B \in \mathbb{K}[X]$ et $n \in \mathbb{N}^*$.

- 1. Montrer que $PGCD(A^n, B^n) = PGCD(A, B)^n$.
- 2. En déduire que : $A|B \Leftrightarrow A^n|B^n$.

Exercice 19 [Polynômes et antécédents de deux nombres]

Soient $P, Q \in \mathbb{C}[X]$ non constants. On suppose que P et Q ont les mêmes racines (sans tenir compte de la multiplicité), et que P-1 et Q-1 également.

- 1. Montrer que $\deg(P \wedge P') + \deg((P-1) \wedge P') \leq \deg(P) 1$.
- 2. En déduire que P = Q. Indication : on pourra poser R = P Q et regarder le nombre de racines distinctes de R.
- 3. Montrer que le résultat est faux sur $\mathbb{R}[X]$.

Exercice 20 [Idéaux sur les polynômes]

On appelle **idéal** de $\mathbb{K}[X]$ un sous-groupe de $(\mathbb{K}[X], +)$ tel que : $\forall P \in I, \forall Q \in \mathbb{K}[X], PQ \in \mathbb{K}[X]$.

- 1. Soit $P \in \mathbb{K}[X]$: montrer que $(P) = \{PQ \mid Q \in \mathbb{K}[X]\}$ est un idéal de $\mathbb{K}[X]$, qu'on appellera idéal engendré par P.
- 2. Inversement, soit I idéal de $\mathbb{K}[X]$, montré que I = (P) pour un certain $P \in \mathbb{K}[X]$ (on traitera à part le cas où $I = \{0\}$, et on utilisera la division euclidienne pour les autres cas).
- 3. Soient $A, B \in \mathbb{K}[X]$. Montrer que $(A) + (B) = \{AP + BQ \mid P, Q \in \mathbb{K}[X]\}$, et $(A) \cap (B)$ sont deux idéaux, et reconnaître des polynômes qui les engendrent.
- 4. Que se passerait-il si on remplaçait $\mathbb{K}[X]$ par \mathbb{Z} ?

Exercice 21 [Équation en des polynômes à l'aide de racines]

En raisonnant éventuellement sur les racines des polynômes qui interviennent, résoudre les équations suivantes d'inconnues $P \in \mathbb{C}[X]$:

1.
$$P(X^2) = P(X)P(X+1)$$
; 2. $P(X^2) = P(X)P(X-1)$.

Exercice 22 [Suite de polynômes définie implicitement]

- 1. Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique polynôme $P_n \in \mathbb{R}[X]$ tel que : $P_n P'_n = \frac{X^n}{n!}$, et donner explicitement P_n (par ses coefficients).
- 2. Montrer que toutes les racines (complexes ou réelles) de P_n sont simples.
- 3. Donner, en fonction de $n \in \mathbb{N}$, le nombre de racines réelles de P_n .

Exercice 23 [Polynômes et intégrales 1]

Trouver tous les polynômes $P \in \mathbb{R}[X]$ tels que :

$$\forall k \in \mathbb{Z}, \ \int_{k}^{k+1} P(t) dt = k+1.$$

Exercice 24 [Polynômes et intégrales 2]

Soit $n \in \mathbb{N}^*$. Montrer qu'il existe un unique (n+1)-uplet $(a_0, \ldots, a_n) \in \mathbb{R}^n$ tel que :

$$\forall P \in \mathbb{R}_n[X], \ \int_0^1 P(t) dt = \sum_{k=0}^n a_k P\left(\frac{k}{n}\right).$$

Exercice 25 [Interpolation sur des ensembles infinis]

Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que :

1.
$$P(\mathbb{R}) \subset \mathbb{R}$$
;

2.
$$P(\mathbb{Q}) \subset \mathbb{Q}$$
;

3.
$$P(\mathbb{Q}) = \mathbb{Q}$$
 (très difficile)

Exercice 26 [Sommes autour des polynômes d'interpolation de Lagrange]

Soient $a_1, \ldots, a_n \in \mathbb{K}$ deux-à-deux distincts. On note L_1, \ldots, L_n les polynômes d'interpolation de Lagrange associés, on pose $P(X) = \prod_{i=1}^{n} (X - a_i)$.

- 1. Montrer que $\sum_{i=1}^{n} L_i = 1$.
- 2. En déduire que $\sum_{i=1}^{n} \frac{1}{P'(a_i)} = 0$.

Exercice 27 [Un calcul de produit par les racines]

Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

- 1. Résoudre l'équation d'inconnue $z \in \mathbb{C}$: $(1+z)^n = \cos(2na) + i\sin(2na)$.
- 2. En déduire la valeur de $\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$.

Exercice 28 [Système sommes/produits généralisés]

Résoudre dans \mathbb{C} les systèmes suivants :

1.
$$\begin{cases} x+y+z=1\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\ xyz=-4 \end{cases}$$
 2.
$$\begin{cases} x(y+z)=1\\ y(z+x)=1\\ z(x+y)=1 \end{cases}$$

2.
$$\begin{cases} x(y+z) = 1\\ y(z+x) = 1\\ z(x+y) = 1 \end{cases}$$
;

3.
$$\begin{cases} x+y+z=2\\ x^2+y^2+z^2=14\\ x^3+y^3+z^3=20 \end{cases}$$

Exercice 29 [Somme de carrés d'inverses et carré de sommes d'inverses]

Soient $x, y, z \in \mathbb{C}^*$ tels que x + y + z = 0. Montrer que :

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^2.$$

4

Exercice 30 [Équations de fractions rationnelles]

- 1. Montrer qu'il n'existe pas de fraction rationnelle F telle que $F^2 = X$.
- 2. Montrer qu'il n'existe pas de fraction rationnelle $F \in \mathbb{C}(X)$ telle que $F' = \frac{1}{Y}$.

Exercice 31 [Dérivée d'une fraction rationnelle]

Soit $F \in \mathbb{K}(X)$. Montrer que : $\deg(F') < \deg(F) - 1 \Rightarrow \deg(F) = 0$. Que penser de ce résultat si $F \in \mathbb{K}[X]$?

Exercice 32 [Fraction rationnelles paires/impaires]

Soit $F \in \mathbb{K}(X)$, de représentant irréductible P/Q. Montrer que F est paire si, et seulement si, P et Q sont tous les deux pairs, ou tous les deux impairs.

Exercice 33 [Image d'un fraction rationnelle]

Soit $F \in \mathbb{C}(X)$, dont on note A l'ensemble des pôles.

- 1. On suppose que F est de la forme $\frac{\alpha}{Q}$ pour $\alpha \neq 0$ et $Q \in \mathbb{C}[X]$. Montrer que $F(\mathbb{C} \setminus A)\mathbb{C}^*$.
- 2. On suppose que F est de la forme $\beta+\frac{\alpha}{Q}$ pour $\alpha,\beta\in\mathbb{C},\ \alpha\neq0$ et $Q\in\mathbb{C}[X]$. Montrer que $F(\mathbb{C} \setminus A)\mathbb{C} \setminus \{\beta\}.$
- 3. Montrer que, dans tous les autres cas : $F(\mathbb{C} \setminus A)\mathbb{C}$. Montrer qu'il existe au plus un complexe qui n'est pas dans $F(\mathbb{C} \setminus A)$.

Exercice 34 [Réduction en éléments simples]

Donner la réduction en éléments simples des fractions rationnelles suivantes :

1.
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
;

4.
$$\frac{2X}{X^2+1}$$
;

7.
$$\frac{3X-1}{X^2(X+1)^2}$$
;

$$X^{2} - 3X + 2$$
2.
$$\frac{X^{2} + 1}{(X - 1)(X - 2)(X - 3)};$$

$$X^{2} + 1$$
5.
$$\frac{1}{X^{2} + X + 1};$$

5.
$$\frac{1}{X^2 + X + 1}$$
;

8.
$$\frac{1}{X^4 + X^2 + 1}$$
;

3.
$$\frac{1}{X(X-1)^2}$$
;

6.
$$\frac{4}{(X^2+1)^2}$$
;

9.
$$\frac{3}{(X^3-1)^2}$$
.

Exercice 35 [Autres décompositions en éléments simples]

Soit $n \in \mathbb{N}^*$. Donner les décompositions en éléments simples des fractions rationnelles suivantes :

$$\frac{n!}{X(X-1)\dots(X-n)} \text{ et } \frac{X^{n-1}}{X^n-1}.$$

Exercice 36 [Recomposition d'éléments simples]

Soit $n \in \mathbb{N}^*$. Donner la forme irréductible de la fraction rationnelle dont la décomposition en éléments simples est : $\sum_{\pi} \frac{\omega^2}{X - \omega}$.

5

Exercice 37 [Racines réelles et coefficients]

Soit $P(X) = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{R}[X]$ dont toutes les racines sont réelles.

- 1. Montrer que toutes les dérivées successives de P ont également toutes leurs racines réelles.
- 2. Montrer que : $\forall x \in \mathbb{R}, (P'(x))^2 P(x)P''(x) \ge 0$.
- 3. En déduire que : $\forall k \in \{1, ..., n-1\}, \ a_{k-1}a_{k+1} \leq a_k^2$

Exercice 38 [Polynômes scindés à racines simples sur \mathbb{R}]

Soit $P \in \mathbb{R}[X]$ un polynôme scindé à racines simples sur \mathbb{R} .

- 1. Montrer que P ne peut pas posséder deux coefficients consécutifs nuls.
- 2. Montrer que toutes les racines de $P^2 + 1$ sont simples.

Exercice 39 [Polynômes scindés sur $\mathbb R$]

Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} (à racines éventuellement multiples). Montrer que, pour tout $\alpha \in \mathbb{R}$, le polynôme $P + \alpha P'$ est également scindé sur \mathbb{R} (on pourra utiliser la fonction $x \mapsto P(x)e^{\alpha x}$ et étudier ses variations).