L3 B, Calcul différentiel UGA, 2017-18

problèmes d'inversion locale et globale

Exercice 1

- 1. Pour les fonctions $f: \mathbb{R} \to \mathbb{R}$ ci-dessous, trouver des ouverts U et V de \mathbb{R} tels que
 - (a) la restriction de f à U soit une bijection de U sur V;
 - (b) la restriction de f à U soit un difféomorphisme de U sur V.
 - i) $f(x) = x^3$, ii) $f(x) = x^2$, iii) $f(x) = \sin x$.
- 2. Reprendre (b) avec iii) en imposant que $\pi \in U$. Donner alors la dérivée de $f_{|U|}^{-1}$.

Exercice 2

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ donnée par $f(x, y) = (e^x \cos y, e^x \sin y)$.

- 1. Montrer que f est localement inversible au voisinage de tout point mais ne l'est pas globalement.
- 2. Trouver deux ouverts U et V de \mathbb{R}^2 tels que la restriction de f à U soit un difféomorphisme $f_{|U}$ de U sur V.
- 3. Pour tout couple (x, y) de U, déterminer $d(f_{|U}^{-1})(f(x, y))$.

Exercice 3

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ donnée par $f(x,y) = (x^2 + y^2, e^{xy})$.

- 1. Au voisinage de quels points f est-elle un difféomorphisme local? On montrera qu'il s'agit des points d'un ouvert U_0 contenant (1,0).
- 2. f est-elle un difféomorphisme global de U_0 sur $f(U_0)\,?$
- 3. Trouver deux ouverts U et V de \mathbb{R}^2 tels que $(1,0) \in U$ et que f établisse un difféomorphisme $f_{|U}$ de U sur V.
- 4. Donner le développement de Taylor à l'ordre 1 de $f_{|U}^{-1}$ au voisinage de (1,1).
- 5. Déterminer $f(\mathbb{R}^2)$. L'application f est-elle ouverte?

Exercice 4

Soit $f: \mathbb{R}^* \times \mathbb{R}^2 \to \mathbb{R}^3$ donnée par $f(x,y,z) = (x+y,\frac{y}{x},\frac{z}{x})$. On considère les ouverts

 $U = \{(x, y, z) \in \mathbb{R}^3 \mid x > 0 \text{ et } x + y > 0\} \text{ et } V = \{(a, b, c) \in \mathbb{R}^3 \mid a > 0 \text{ et } b > -1\} \text{ de } \mathbb{R}^3.$

- 1. Montrer que la restriction de f à U est un difféomorphisme $f_{|U}$ de U sur V.
- 2. Déterminer $d(f_{|U}^{-1})((\frac{1}{2},0,1))$.

Exercice 5

Soient U un ouvert de \mathbb{R}^n et $f \colon U \to \mathbb{R}$ différentiable telle que df ne s'annule pas sur U. Montrer que f(U) est un ouvert de \mathbb{R} .

Exercice 6

Soient $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par $f(A) = A^2$, et $D = \text{diag}(d_1, \dots, d_n)$ une matrice diagonale. À quelle condition sur les $(d_i)_i$ l'application f est-elle un difféomorphisme local en D? exemple : $D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Exercice 7

On considère l'espace vectoriel E des polynômes de $\mathbb{R}[X]$ dont le degré est au plus n.

- 1. On définit l'application $f: \mathbb{R} \times \mathbb{R}^n \to E$ par $f((s, x_1, ..., x_n)) = s \prod_{i=1}^n (X x_i)$. Calculer les dérivées partielles de f par rapport à s et par rapport aux x_i .
- 2. Montrer que f est de classe C^1 sur $\mathbb{R} \times \mathbb{R}^n$.
- 3. Montrer que f est un difféomorphisme local en $(s, x_1, ..., x_n)$ si et seulement si s n'est pas nul et les x_i sont tous distincts.
- 4. On note D l'ensemble des polynômes non nuls de E ayant n racines distinctes réelles. Montrer que D est un ouvert de E.
- 5. Soit $P \in D$. Montrer qu'il existe un ouvert U de D contenant P, une application $c: U \to \mathbb{R}$ de classe C^1 et n applications $r_i: U \to \mathbb{R}$ de classe C^1 tels que pour tout polynôme Q de U, on ait :

$$Q = c(Q) \prod_{i=1}^{n} (X - r_i(Q)).$$