différentiabilité

Exercice 1

Soient $U \subset \mathbb{R}^n$ un ouvert, $a \in U$, $f: U \to \mathbb{R}$ et $v \in \mathbb{R}^n$. On rappelle que la limite

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t},$$

quand elle existe, est la **dérivée directionnelle** de f au point a, dans la direction v.

- 1. Notons $(e_1, ..., e_n)$ la base canonique de \mathbb{R}^n . Lorsqu'elle existe, que vaut la dérivée directionnelle de f au point a, dans la direction e_i ?
- 2. Si f est différentiable en a, montrer qu'elle admet une dérivée directionnelle en a dans toute direction v, dérivée qui dépend linéairement de v.
- 3. a) On munit \mathbb{R}^n du produit scalaire usuel et de la norme associée. On suppose que f est différentiable en a. Montrer que si $v \in \mathbb{R}^n$ est de norme 1, on a $df(a)(v) \leq \|\nabla f(a)\|$, avec égalité si et seulement si v pointe dans la direction du gradient (en d'autres termes, le gradient pointe dans la direction de plus grande pente).
 - b) On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par $f(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2}$. Calculer $\nabla f(x,y)$ en un point quelconque. Pour quels (x,y) la direction en (x,y) de pente la plus négative pointe-t-elle vers l'origine?
- 4. Soit $I \subset \mathbb{R}$ un intervalle ouvert, et $\gamma : I \to U$ différentiable, telle que $f(\gamma(t))$ est constante. Montrer qu'alors pour tout $t, \gamma'(t)$ est orthogonal au gradient $\nabla f(\gamma(t))$ (en d'autres termes, le gradient est orthogonal aux ensembles de niveau de f).

Exercice 2

Pour les applications suivantes et pour tout point m de l'espace de départ, calculer la matrice jacobienne de f en m et expliciter df(m). Calculer ensuite la dérivée directionnelle de f en 0, dans la direction v.

- 1. $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par $f(x,y) = (x+y)e^{-y^2}$ et v = (3,1).
- 2. $f: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par $f(x,y,z) = (x+y+z,x^2+y^2)$ et v=(1,1,1).
- 3. $f:\mathbb{R}\to\mathbb{R}^3$ donnée par $f(t)=(t\sin t,\,t\cos t,\,t^2)$ et v=2.

Exercice 3

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ et $g: \mathbb{R}^2 \to \mathbb{R}^2$ données respectivement par $f(x,y) = \sin(x^2 - y^2)$ et g(x,y) = (x+y,x-y). Pour tout point (x,y) de \mathbb{R}^2 , déterminer de deux manières différentes la différentielle de $f \circ g$ en un point (x,y) de \mathbb{R}^2 et donner sa matrice dans les bases canoniques de \mathbb{R}^2 et \mathbb{R} .

Exercice 4

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(0,0) = 0 et $f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$ si $(x,y) \neq (0,0)$.

- 1. Montrer que f est continue sur \mathbb{R}^2 et différentiable sur $\mathbb{R}^2 \setminus (0,0)$.
- 2. Montrer que f admet des dérivées directionnelles dans toutes les directions en (0,0).
- 3. L'application f est-elle différentiable en (0,0)?
- 4. L'application f admet-elle des dérivées partielles continues en (0,0)?

Exercice 5

- a) Représenter le graphe des fonctions $f_1(x,y) = x^2$, $f_2(x,y) = y^2$ de \mathbb{R}^2 dans \mathbb{R} , puis celui de $f(x,y) = \min(x^2,y^2)$.
 - b) Montrer que la fonction f n'est pas différentiable en (x_0, x_0) si $x_0 \neq 0$.
 - c) Montrer que la fonction f est différentiable en (0,0).
 - d) Montrer que la fonction f admet des dérivées partielles en (0,0).
 - e) Montrer que la fonction f n'admet de dérivées partielles dans aucun voisinage de (0,0).
- f) Montrer que la réciproque du théorème : "Si f admet dans un voisinage de (x_0, y_0) des dérivées partielles et que ces dérivées partielles sont continues en (x_0, y_0) , alors f est différentiable en (x_0, y_0) " est fausse.

Exercice 6

Donner le domaine de différentiabilité et le cas échéant la différentielle des applications suivantes :

1. f, g et h applications de \mathbb{R}^n dans \mathbb{R} définies par $f(x) = ||x||^2$, g(x) = ||x|| et $h(x) = \langle u(x), x \rangle$, où $\langle \cdot, \cdot \rangle$ est le produit scalaire usuel sur \mathbb{R}^n , $||\cdot||$ désigne la norme euclidienne associée, et u est un endomorphisme de \mathbb{R}^n .

- 2. $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ et $g: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définies respectivement par $f(A) = A^2$ et $g(A) = A^3$.
- 3. $f: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par f(A, B) = AB.
- 4. $g: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$ définie par $g(A, B) = \operatorname{tr}(AB)$.

Exercice 7

On considère la fonction $f(x,y) = \frac{y^2}{4} - \frac{x^2}{2}$ et on note $S \subset \mathbb{R}^3$ le graphe de f.

- 1. On note C_0 l'intersection de S avec le plan d'équation z=4. Quelle est sa nature? Quel est le lien avec la ligne de niveau f=4?
- 2. Vérifier que C_0 contient le point A = (0, 4, 4).
- 3. Tracer la courbe C_0 .
- 4. Montrer que C_0 est la réunion de deux courbes $C_{0,1}$ et $C_{0,2}$. On notera $C_{0,1}$ celle qui contient A.
- 5. Donner une paramétrisation $c_0: I \to C_{0,1}$ où I est un intervalle de \mathbb{R} et c_0 une application dérivable sur I.
- 6. Vérifier que pour tout point (x, y) de la ligne de niveau f = 4, tout vecteur tangent v à cette ligne de niveau au point (x, y) est orthogonal au gradient $\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)$.
- 7. Soient C_1 la courbe obtenue en coupant S par le plan d'équation x = 0 et C_2 celle obtenue en coupant S par le plan d'équation y = 4. Donner une paramétrisation de C_1 et une paramétrisation de C_2 .
- 8. Pour i = 0, 1, 2, donner un vecteur non nul v_i tangent en A à la courbe C_i .
- 9. Vérifier que les vecteurs v_0 , v_1 et v_2 sont coplanaires.
- 10. Soit C_3 la courbe obtenue en coupant S par le plan d'équation z = x + 4. Montrer que C_3 est la réunion de deux courbes $C_{3,1}$ et $C_{3,2}$. On notera $C_{3,1}$ celle qui contient A.
- 11. Donner une paramétrisation c_3 de la courbe $C_{3,1}$ et en déduire un vecteur tangent v_3 à la courbe C_3 en A.
- 12. Vérifier que v_3 appartient au plan vectoriel engendré par v_1 et v_2 .

Exercice 8

On appelle surface S de \mathbb{R}^3 l'ensemble des points (x,y,z) tels que g(x,y,z)=0, où $g:\mathbb{R}^3\to\mathbb{R}$ est donnée, de classe C^1 . On dit que S est la surface d'équation g=0. Soit alors $m=(x,y,z)\in S$. On dit que le vecteur $v\in\mathbb{R}^3$ est tangent à S en m lorsqu'il existe

un intervalle ouvert I de \mathbb{R} , un réel $t_0 \in I$ et une courbe $c: I \to S$ de classe C^1 tels que $c(t_0) = m$ et $c'(t_0) = v$.

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ une application de classe C^1 et $S \subset \mathbb{R}^3$ son graphe, c'est-à-dire la surface de \mathbb{R}^3 d'équation g = 0 où pour $(x, y, z) \in \mathbb{R}^3$ on pose g(x, y, z) = z - f(x, y).

- 1. Quelle est la dimension de $\operatorname{Ker} dg(m)$?
- 2. Montrer que l'ensemble des vecteurs tangents à S en m est $\operatorname{Ker} dg(m)$. Nous dirons que **l'espace tangent à** S **en** m est le sous-espace affine de \mathbb{R}^3 qui contient m et dont la direction est $\operatorname{Ker} dg(m)$. On le note $T_m S = T_m f$.
- 3. Écrire l'équation de T_mS à l'aide de la fonction f.

Exercice 9

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = x^2y - 3xy + xy^2$.

- 1. Montrer que le point (1,-1,3) appartient au graphe de f. Donner une équation du plan tangent au graphe de f en ce point.
- 2. Calculer le gradient de f en (1,-1). Donner une équation de la tangente à la courbe de niveau 3 au point (1,-1).
- 3. Écrire une équation du plan tangent au graphe de f en un point quelconque (a, b, f(a, b)). Pour quels points (a, b) ce plan contient-il l'origine?

Exercice 10

Soit $h: \mathbb{R}^{+*} \to \mathbb{R}$ une application dérivable et $f: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par $f(x,y) = h(x^2 + y^2)$. On note S le graphe de f.

- 1. Soit r une rotation d'axe Oz. Montrer que r(S) = S.
- 2. Montrer que si v est un vecteur tangent à S en un point m de S alors r(v) est un vecteur tangent à S en r(m).
- 3. On considère $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ l'application définie par $f(x,y) = \frac{1}{2} \ln(x^2 + y^2)$, et S son graphe. Montrer que S contient les points $m_1 = (\sqrt{2}, 0, \frac{1}{2} \ln 2)$ et $m_2 = (1, 1, \frac{1}{2} \ln 2)$. Donner les équations de T_1 et T_2 les plans tangents à S en m_1 et m_2 . Vérifier que $r(T_1) = T_2$, où r est la rotation d'axe Oz qui envoie m_1 sur m_2 .