TD 3 de suites numériques

Les énoncés sont classés par difficulté via le symbole \bigstar .

▶Exercice 1. ★★

Trouver tous les équivalents des trois tableaux de cours.

► Exercice 2. ★ Equivalents : produit et quotients.

Donner un équivalent le plus simple des suites suivantes quand $n \to +\infty$:

1)
$$u_n = \frac{n^3 + 12(-1)^n}{-n^2 - 5\sin(n)}$$
 2) $u_n = 1 + \frac{1}{\sqrt{n}}$ 3) $u_n = \frac{n+2^n}{n^2+n}$, 4) $u_n = \frac{n!+2^n}{e^{-n}n+n^2}$,

5)
$$u_n = \left(1 + \frac{1}{n}\right)^n$$
 6) $u_n = \sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1$ **7)** $u_n = ch(n)$ **8)** $u_n = \frac{\cos(n)}{n+1}$

► Exercice 3. ★★ Composition d'équivalents

Donner un équivalent le plus simple des suites suivantes quand $n \to +\infty$ et vérifiez cet équivalent en calculant la limite du quotient :

1)
$$u_n = \ln(n+1)$$
 2) $u_n = \sqrt{n + \ln(n)}$ 3) $u_n = e^{n^2 + \frac{1}{n}}$, 4) $u_n = e^{n+2}$.

► Exercice 4. ★ Négligeabilité

Classer les suites, dont les termes généraux, sont les suivants par ordre de négligeabilité:

1)
$$\frac{1}{n}$$
, $\frac{1}{n^2}$, $\frac{\ln(n)}{n}$, $\frac{\ln(n)}{n^2}$, $\frac{1}{n\ln(n)}$.

2)
$$n, n^2, n \ln(n), \sqrt{n} \ln(n), \frac{n^2}{\ln(n)}$$
.