Ordre de grandeurs des suites

Dites si pour chacun des couples suivants, une suite est négligeable devant l'autre ou non.

Les cases vérification sont trop petites si je dis que untel est un petit o de untel.

	des cases vérification sont trop petites si je dis que untel est un petit o de untel.				
u_n	v_n	Qui est un o de qui			
1	n	*	*		
\sqrt{n}	n	*	*		
n^2	n				
n+1	n	*	*		
ln(n)	n^4				
2^n	$\ln(n)$	*	*		
3^n	2^n	*	*		
n!	5^n	*			
n!	n^n	*			
$\frac{1}{n}$	1	*			
$\frac{1}{n^2}$	$\frac{1}{\sqrt{n}}$				
e^{-n}	2	*			
$1/3^{n}$	$1/2^{n}$				

Donnez un équivalent quand $n \to +\infty$ de

u_n	L'equivalent	Verification
$\frac{u_n}{n+1/n}$	*	*
$n^2 + n$	*	*
$n2^n$	*	*
$2^n - n^2$		
$2^n + \ln(n) + n$	*	*
$n!-2^n$		
$(n+(-1)^n)(-2n+\sqrt{n})$	*	*
$\frac{n^3+6}{2^n-n}$	*	*
$\frac{n+6}{2n-(-1)^n}$		
$\frac{1}{n + \ln(n)}$		
$\frac{n^3 + (-1)^n - \sin(n)}{n^2 + 2 - e^n}$		
$\frac{\sin(n)}{2\sqrt{n}-1}$		
$\sqrt{n+1}$		
$\sqrt{n+1} - \sqrt{n}$		
$\exp(n+1)$		
$\ln(\sqrt{n} + \sin(n))$		

Donnez un équivalent quand $n \to +\infty$ de

u_n	DL	Equivalent
$\exp(\frac{1}{n})$		
$\sin(\frac{1}{n})$		
$\cos(\frac{1}{n})$		
$\exp(\frac{1}{n}) - 1$		
$\sin(\frac{1}{n^2}) - \frac{1}{n^2}$		
$\ln(1+\frac{1}{n})-\frac{1}{n}$		
$\ln(1 + \frac{\ln(n)}{n})$		
$n\sin\left(\frac{1}{n^2}\right)$		
$\ln(n) \exp\left(\frac{1}{\sqrt{n}}\right)$		