Feuille d'exercices n°11 : Applications

Exercice 1 [Images directes]

Déterminer f(I) dans les cas suivants :

1.
$$f = \exp \operatorname{et} I =]-1;0];$$

1.
$$f = \exp \text{ et } I =]-1;0];$$
 3. $f: x \mapsto 1+x^2 \text{ et } I =]-2;4];$ 5. $f = \sin \text{ et } I =]\frac{\pi}{4}; \frac{5\pi}{2}[;$

5.
$$f = \sin \text{ et } I = \frac{\pi}{4}; \frac{5\pi}{2}[$$
;

2.
$$f = \ln \text{ et } I =]0; 1[;$$

4.
$$f = \sin \operatorname{et} I = \left[\frac{\pi}{4}; \frac{\pi}{2}\right];$$
 6. $f = \cos \operatorname{et} I = \left[\frac{\pi}{4}; \frac{\pi}{2}\right].$

6.
$$f = \cos \text{ et } I = \left[\frac{\pi}{4}; \frac{\pi}{2}\right].$$

Exercice 2 [Images réciproques]

Déterminer $f^{-1}(I)$ dans les cas suivants :

1.
$$f = \exp \operatorname{et} I =]-1;1[;$$

1.
$$f = \exp \text{ et } I =]-1;1[$$
; 3. $f: x \mapsto 1+x^2 \text{ et } I = [2;5[$; 5. $f = \sin \text{ et } I =]0;\frac{1}{2}[$; 2. $f = \ln \text{ et } I =]1;+\infty[$; 4. $f = \sin \text{ et } I = \{\frac{1}{2}\}$; 6. $f = \cos \text{ et } I = [-1;1[$.

5.
$$f = \sin \text{ et } I =]0; \frac{1}{2}[$$
;

2.
$$f = \ln \text{ et } I =]1; +\infty[;$$

4.
$$f = \sin \operatorname{et} I = \{\frac{1}{2}\}$$

6.
$$f = \cos \text{ et } I = [-1; 1].$$

Exercice 3 [Étude d'une fonction par une composée] On considère $a,b,c \in \mathbb{R}$ tels que $c \neq 0$ et $a^2 + bc \neq 0$. On pose $E = \mathbb{R} \setminus \{\frac{a}{c}\}$.

- 1. Montrer que la fonction $f: x \mapsto \frac{ax+b}{cx-a}$ est bien définie sur E.
- 2. Montrer que la composée $f \circ f$ est bien définie sur E.
- 3. Exprimer $f \circ f(x)$ pour tout $x \in E$, et en déduire f(E).

Exercice 4 [Quelques exemples d'applications]

Dire si les applications suivantes sont injectives, surjectives ou bijectives:

1.
$$f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1 \end{array} \right.;$$
2. $g: \left\{ \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z} \\ n & \mapsto & n+1 \end{array} \right.;$

2.
$$g: \begin{cases} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n+1 \end{cases}$$
;
3. $h: \begin{cases} \mathbb{Z}^2 \to \mathbb{Z}^2 \\ (n,m) \mapsto (n-m,n+m) \end{cases}$;
4. $k: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x-y,x+y) \end{cases}$;

4.
$$k: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x-y,x+y) \end{array} \right.$$

5.
$$l: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{2x}{1+x^2} \end{array} \right.$$

6.
$$m: \left\{ \begin{array}{ccc} [-1;1] & \to & [-1;1] \\ x & \mapsto & \frac{2x}{1+x^2} \end{array} \right.$$
;

7.
$$n: \left\{ \begin{array}{ccc} \mathbb{R} \setminus \{1\} & \to & \mathbb{R} \\ x & \mapsto & \frac{x+1}{x-1} \end{array} \right.$$

8.
$$p: \left\{ \begin{array}{ccc} \mathbb{R} \setminus \{1\} & \to & \mathbb{R} \setminus \{1\} \\ x & \mapsto & \dfrac{x+1}{x-1} \end{array} \right. ;$$

En cas de non-surjectivité, décrire simplement l'image de la fonction.

Exercice 5 [Compositions et bijections 1]

Soient E, F deux ensembles, $f: E \to F$ et $g: F \to E$. On suppose que $f \circ g \circ f$ est bijective. Montrer que f et q sont bijectives.

Exercice 6 [Compositions et bijections 2]

Soient E, F, G trois ensembles, $f: E \to F, g: F \to G$ et $h: G \to E$. On suppose que :

- $h \circ q \circ f$ est injective;
- $g \circ f \circ h$ et $f \circ h \circ g$ sont surjectives.

Montrer que f, g, h sont bijectives.

Exercice 7 [Compositions et injections]

Soient E, F, G trois ensembles et $g: F \to G$.

Montrer que g est injective si, et seulement si : $\forall f_1, f_2 : E \to F, \ g \circ f_1 = g \circ f_2 \Rightarrow f_1 = f_2$.

Exercice 8 [Compositions et surjections]

Soient E, F, G trois ensembles et $f: E \to F$. On suppose que G possède au moins deux éléments. Montrer que f est surjective si, et seulement si : $\forall g_1, g_2: F \to G, \ g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2$.

Exercice 9 [Application idempotente]

Soient E un ensemble et $f: E \to E$ telle que $f \circ f = f$. Montrer l'équivalence :

$$f$$
 injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ bijective

et préciser ce que vaut f dans ce cas.

Exercice 10 [Application produit]

Soient E, F, G trois ensembles, $f: E \to F$ et $g: E \to G$. On définit l'application $h: E \to F \times G$ par : $\forall x \in E, h(x) = (f(x), g(x))$.

- 1. On suppose que f ou g est injective. Montrer que h est injective.
- 2. On suppose que f et g sont surjectives : h est-elle surjective?

Exercice 11 [Fonctions sur les parties 1]

On considère A, B deux parties d'un ensemble E. On définit l'application f suivante :

$$f: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B) \end{array} \right..$$

- 1. Montrer que f est injective si, et seulement si : $A \cup B = E$.
- 2. Montrer que f est surjective si, et seulement si : $A \cap B = \emptyset$.
- 3. En déduire une condition nécessaire et suffisante sur A et B pour que f soit bijective.

Exercice 12 [Fonctions sur les parties 2]

On considère A, B deux parties d'un ensemble E. On définit l'application f suivante :

$$f: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(E) \times \mathcal{P}(E) \\ X & \mapsto & (X \cup A, X \cup B) \end{array} \right..$$

- 1. Montrer que f n'est pas surjective.
- 2. Donner une condition nécessaire et suffisante sur A et B pour que f soit injective.

Exercice 13 [Caractérisation de l'injectivité et surjectivité par les parties] Soit $f: E \to F$:

- 1. Montrer que pour tous $A, A' \in \mathcal{P}(E) : f(A) \subset f(A') \Leftrightarrow A \subset f^{-1}(f(A'))$.
- 2. En déduire que f est injective si, et seulement si : $\forall A \in \mathcal{P}(E), \ A = f^{-1}(f(A)).$
- 3. Montrer que pour tous $B, B' \in \mathcal{P}(F) : f^{-1}(B) \subset f^{-1}(B') \Leftrightarrow f(f^{-1}(B)) \subset B'$.
- 4. En déduire que f est surjective si, et seulement si : $\forall B \in \mathcal{P}(F), \ B = f(f^{-1}(B)).$

Exercice 14 [Caractérisation de la bijectivité par les parties]

Soit $f: E \to F$. Montrer que f est bijective si, et seulement si : $\forall A \in \mathcal{P}(E), f(\overline{A}) = \overline{f(A)}$.