Chapitre 3 : Calcul littéral.

Objectifs du chapitre :

Capacité	Acquisition
Développer, factoriser une expression.	
Utiliser les identités remarquables.	
Transformer des expressions fractionnaires simples.	
Résoudre une équation produit nul.	
Résoudre une équation quotient.	
Résoudre des équations du type $x^2 = k$, $\sqrt{x} = k$, $\frac{1}{x} = k$.	
Résoudre algébriquement un problème associé à une équation.	
Travailler sur des expressions ou des relations simples.	

Pour être sûr d'être au point avec les différentes notions, je me réfère à la page 90 du livre, où sont donnés les exercices associés.

Développer et factoriser

La distributivité

Propriété I.1. Pour des réels a, b, c, d, on a les règles de distributivité, données par les égalités suivantes :

$$\begin{array}{rcl} a\times (b+c) & = & a\times b + a\times c \\ (a+b)\times (c+d) & = & a\times c + a\times d + b\times c + b\times d \end{array}.$$

Remarques I.2. • Les formes de gauche s'appellent les formes factorisées, et celles de droite les formes développées.

• On factorise en allant des formes de droite à celles de quuche, et on développe en allant dans l'autre sens.

Les identités remarquables В

Propriété I.3. Soient a, b deux réels. On a les identités remarquables suivantes :

- $(a+b)^2 = a^2 + 2ab + b^2$;
- $(a-b)^2 = a^2 2ab + b^2$; $(a+b)(a-b) = a^2 b^2$.

Démonstration. * Montrons la première identité remarquable :

Preuve formelle : On utilise les règles de distributivité :

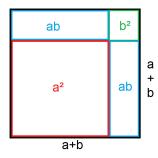
$$(a+b)^{2} = (a+b) \times (a+b)$$

$$= a \times a + a \times b + b \times a + b \times b$$

$$= a^{2} + ab + ab + b^{2}$$

$$= a^{2} + 2ab + b^{2}$$

Illustration géométrique : Si a et b sont positifs. On considère le carré de côté (a+b) que l'on découpe comme sur la figure ci-dessous en : un carré de côté a; un carré de côté b; deux rectangles de côtés a et b.



L'aire du grand carré est égale à la somme des aires des carrés et rectangles qui le composent, et on retrouve : $(a+b)^2 = a^2 + 2ab + b^2$.

Exemple I.4. * Soient a, b deux réels strictement positifs. Montrons que : $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$.

Pour cela, posons $c = \sqrt{a+b}$ et $d = \sqrt{a} + \sqrt{b}$. On a:

- $c^2 = a + b$ (par définition);
- $d^2 = a + b + 2\sqrt{ab}$ (par identité remarquable);
- $donc \ d^2 c^2 = 2\sqrt{ab} > 0$;
- donc (d-c)(d+c) > 0, et comme (d+c) > 0, alors : d-c > 0.

Et finalement d > c, ce qui était le résultat voulu.

Exercices: 105-107 p.60

TT Résoudre des équations

Manipuler des équations

Propriété II.1. Pour transformer une équation sans changer l'ensemble de ses solutions, on peut :

- 1. développer, factoriser ou réduire les membres;
- 2. ajouter ou soustraire la même quantité à chaque membre;
- 3. multiplier ou diviser chaque membre par une même quantité non nulle.

1. Le point le plus important est que toutes les modifications que l'on apporte à l'égalité de départ ne modifient pas l'ensemble solution. Pour cela, il faut prendre garde, quand on fait une modification, à pouvoir "revenir en arrière". On dit alors que les équations considérées sont équivalentes, et on passe d'une ligne à l'autre en notant le $symbole \Leftrightarrow$.

2. En pratique, pour éviter des erreurs de calcul, on vérifiera que la solution trouvée est bien une solution. En revanche, cela n'assure en rien que l'on ait bien trouvé toutes les solutions.

Exemple II.3. Résolvons l'équation " $3 \times (2x - 2) = 4x + 12$ ":

Donc l'équation admet pour ensemble solution : $S = \{9\}$.

Vérification:

- $3 \times (2 \times 9 2) = 2 \times (18 2) = 3 \times 16 = 48$;
- $4 \times 9 + 12 = 36 + 12 = 48$

Quelques équations particulières

Propriété II.4. Un produit de facteurs est nul si, et seulement si, l'un au moins des facteurs est nul.

Exemple II.5. Résolvons l'équation "(3x+1)(2x-4) = 0"

$$(3x+1)(2x-4) = 0 \Leftrightarrow 3x+1 = 0 \text{ ou } 2x-4 = 0$$

 $\Leftrightarrow 3x = -1 \text{ ou } 2x = 4 \Leftrightarrow x = -1/3 \text{ ou } x = 2$

Donc l'équation admet pour ensemble solution : $S = \{-\frac{1}{3}; 2\}$.

 $V\'{e}rification:$

- $(3 \times \frac{-1}{3} + 1)(2 \times \frac{-1}{3} 4) = 0 \times \frac{-14}{3} = 0$; $(3 \times 2 + 1)(2 \times 2 4) = 7 \times 0 = 0$.

Exemple II.6. Résolvons l'équation " $9x^2 - 12x + 4 = 0$ " On utilise les identités remarquables pour voir que :

$$9x^2 - 12x + 4 = (3x)^2 - 2 \times 3x \times 2 + 2^2 = (3x - 2)^2$$

Et ainsi:

$$9x^2 - 12x + 4 = 0 \Leftrightarrow (3x - 2)^2 = 0$$

$$\Leftrightarrow 3x - 2 = 0 \Leftrightarrow 3x = 2 \Leftrightarrow x = 2/3$$

Donc l'équation admet pour seule solution 2/3.

Vérification: $9 \times (2/3)^2 - 12 \times 2/3 + 4 = 4 - 8 + 4 = 0$, donc 2/3 est bien solution.

Propriété II.7. On considère l'équation $x^2 = k$:

• $si \ k < 0$: $il \ n'y \ a \ pas \ de \ solution$;

- $si \ k = 0$: la seule solution est 0;
- $si \ k > 0$: $il \ y \ a \ deux \ solutions$, à $savoir \pm \sqrt{k}$.

Exemples II.8. • l'équation $x^2 + 3 = 0$ n'admet pas de solution : $x^2 = 3 = 0 \Leftrightarrow x^2 = -3$;

• l'équation $x^2 + 9 = 25$ admet pour solutions $\pm 4 : x^2 + 9 = 25 \Leftrightarrow x^2 = 25 - 9 = 16$.

Exemple II.9. Développer l'expression $(x+1)^2 + 3$, et en déduire les solutions de l'équation : " $x^2 + 2x + 4 = 0$ ". En utilisant les identités remarquables, on trouve : $(x+1)^2 + 3 = x^2 + 2x + 1 + 3 = x^2 + 2x + 4$. Ainsi, on a :

$$x^{2} + 2x + 4 = 0 \Leftrightarrow (x+1)^{2} + 3 = 0$$

 $\Leftrightarrow (x+1)^{2} = -3$

et la dernière équation n'a pas de solution, car -3 < 0. Donc il n'y a pas de solution.

Propriété II.10. On considère l'équation $\sqrt{x} = k$:

- $si \ k < 0$: $il \ n$ 'y a pas de solution;
- $si \ k \ge 0$: la seule solution est k^2 .

Exemples II.11. • $l'\acute{e}quation \sqrt{x} = 3 \ a \ pour \ solution \ x = 3^2 = 9$;

• l'équation $\sqrt{x} = \sqrt{2}$ a pour solution $x = (\sqrt{2})^2 = 2$.

Propriété II.12. Un quotient est nul si, et seulement si, son numérateur est nul, et son dénominateur est non nul.

Exemple II.13. Résolvons l'équation " $\frac{3x+1}{2x-4} = 0$ "

$$\frac{3x+1}{2x-4} = 0 \quad \Leftrightarrow \quad 3x+1 = 0 \text{ et } 2x-4 \neq 0$$
$$\Leftrightarrow \quad x = -1/3 \text{ et } x \neq 2$$

Donc la seule solution de l'équation est $\frac{-1}{3}$.

Propriété II.14. On considère l'équation $\frac{1}{x} = k$:

- $si \ k = 0$: $il \ n'y \ a \ pas \ de \ solution$;
- $si \ k \neq 0$: la seule solution est $\frac{1}{k}$.

Exemple II.15. • l'équation $\frac{1}{x} = 3$ a pour solution $x = \frac{1}{3}$;

- l'équation $\frac{1}{x} = \frac{1}{2}$ a pour solution x = 2;
- l'équation $\frac{1}{x} = \frac{3}{4}$ a pour solution $x = \frac{1}{\frac{3}{4}} = \frac{4}{3}$.