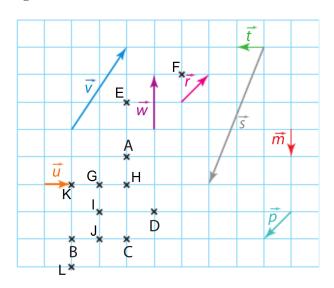
Parcours A

Notions de base sur les vecteurs (caractéristiques, sommes, multiplication par un réel).

Exercice 36 p.151

- 1.a) \overrightarrow{p} b) \overrightarrow{m} c) \overrightarrow{t} d) \overrightarrow{v} .
- 2. et 3. voir sur la figure



Exercice 42 p.151

- a) (en vert) $-\overrightarrow{BA} = \overrightarrow{AB}$, d'après la propriété du cours.
- b) (en bleu) En utilisant la relation de Chasles, on trouve : $\overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BD}$.
- c) (en rouge) Comme les vecteurs \overrightarrow{BA} et \overrightarrow{BC} ont même origine, alors on a $\overrightarrow{BA} + \overrightarrow{BC} = \overrightarrow{BE}$, où E est tel que BAEC est un parallélogramme.

Une autre manière de construire le point E est de le construire de telle sorte que $\overrightarrow{BC} = \overrightarrow{AE}$ (ou tel que $\overrightarrow{BA} = \overrightarrow{CE}$, ce qui revient au même).

d) (en violet) On commence déjà par changer la différence en une somme, en utilisant que $-\overrightarrow{BA} = \overrightarrow{AB}$. Ainsi on trouve : $\overrightarrow{CB} - \overrightarrow{BA} = \overrightarrow{CB} + \overrightarrow{AB}$. Ici, les vecteurs ont même extrémité, donc on ne peut rien faire directement.

On construit donc un point F tel que $\overrightarrow{AB} = \overrightarrow{BF}$. Et on trouve finalement : $\overrightarrow{CB} - \overrightarrow{BA} = \overrightarrow{CF}$.

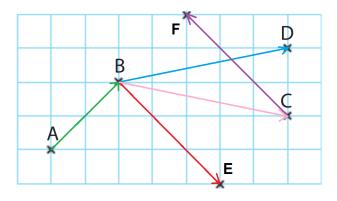
Une dernière manière, plus subtile, permet d'utiliser le résultat du c), puisque l'on a :

$$\overrightarrow{CB} - \overrightarrow{BA} = -\left(\overrightarrow{BC} + \overrightarrow{BA}\right) = -\left(\overrightarrow{BA} + \overrightarrow{BC}\right) = -\overrightarrow{BE} = \overrightarrow{EB}$$

ce qui se voit sur la figure, comme BECF est un parallélogramme.

e) (en rose) On commence par changer la différence en somme : $\overrightarrow{DC} - \overrightarrow{DB} = \overrightarrow{DC} + \overrightarrow{BD}$. On a donc l'extrémité du second vecteur qui est l'origine du premier. On peut donc utiliser la relation de Chasles, après avoir échangé les deux vecteurs :

$$\overrightarrow{DC} - \overrightarrow{DB} = \overrightarrow{DC} + \overrightarrow{BD} = \overrightarrow{BD} + \overrightarrow{DC} = \overrightarrow{BC}.$$



Exercice 47 p.152

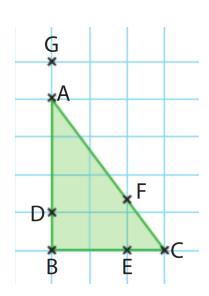
a) Le point D est du même côté que A par rapport à B sur la droite AB, donc le coefficient est positif. De plus, on a BD = 1 et BA = 4 (en comptant les carreaux), donc : $\overrightarrow{BD} = \frac{1}{4}\overrightarrow{BA}$, et $\overrightarrow{BA} = 4\overrightarrow{BD}$.

b) On fait comme en a), et on trouve : $\overrightarrow{BE} = \frac{2}{3}\overrightarrow{BC}$, et $\overrightarrow{BC} = \frac{3}{2}\overrightarrow{BE}$.

c) On trouve que le coefficient est positif. Au lieu de déterminer les normes des vecteurs (ce qui pourrait aboutir à des calculs approchés, comme le point F n'est pas sur les carreaux), on utilise le théorème de Thalès appliqué aux triangles \overrightarrow{CEF} et \overrightarrow{CBA} , ce qui donne que : $\frac{CF}{CA} = \frac{CE}{CB} = \frac{1}{3}$. Et ainsi : $\overrightarrow{CF} = \frac{1}{3}\overrightarrow{CA}$, et $\overrightarrow{CA} = 3\overrightarrow{CF}$.

d) On peut se ramener aux situations précédentes en raisonnant avec les vecteurs \overrightarrow{AB} et \overrightarrow{AG} . On déduit les résultats voulus car $\overrightarrow{AB} = -\overrightarrow{BA}$. Ou sinon on reconnaît directement que les vecteurs \overrightarrow{BA} et \overrightarrow{AG} ont même direction et même sens, donc sont reliés par un coefficient positif. Reste à calculer ce coefficient, qu'on trouve en utilisant que $\overrightarrow{BA} = 4$ et $\overrightarrow{AG} = 1$. On trouve alors : $\overrightarrow{BA} = 4\overrightarrow{AG}$, et $\overrightarrow{AG} = \frac{1}{4}\overrightarrow{BA}$.

Pour le d), on peut aussi utiliser les résultats du a), en remarquant que $\overrightarrow{AG} = \overrightarrow{BD}$.



Exercice 50 p.152

a) Grâce à la relation de Chasles, on a :

$$\overrightarrow{BD} + \overrightarrow{DA} = \overrightarrow{BA}.$$

- b) Ajouter le vecteur nul ne fait rien donc : $\overrightarrow{BD} + \overrightarrow{AA} = \overrightarrow{BD} + \overrightarrow{0} = \overrightarrow{BD}$.
- c) Grâce à la relation de Chasles, on a :

$$\overrightarrow{BD} + \overrightarrow{DB} = \overrightarrow{BB} = \overrightarrow{0}$$
.

d) On transforme la différence en somme, puis on utilise la relation de Chasles :

$$\overrightarrow{BD} - \overrightarrow{BA} = \overrightarrow{BD} + \overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}.$$

e) On utilise la relation de Chasles puis on reconnait un produit d'un vecteur par un réel :

$$\overrightarrow{BD} + \overrightarrow{AD} + \overrightarrow{BA} = \overrightarrow{BD} + \overrightarrow{BA} + \overrightarrow{AD} = \overrightarrow{BD} + \overrightarrow{BD} = 2 \times \overrightarrow{BD}.$$

f) On transforme les différences en sommes et on simplifie par la relation de Chasles (trois fois) :

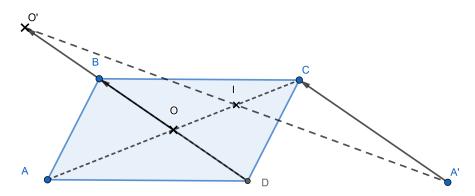
$$\overrightarrow{BD} - \overrightarrow{BA} + \overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{BD} + \overrightarrow{AB} + \overrightarrow{DA} + \overrightarrow{BD} = \overrightarrow{BD} + \overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{BD}$$

Parcours B

Notions avancées sur les vecteurs (colinéarité, propriétés géométriques).

Exercice 39 p.152

1. et 2. On a fait une construction sur Geogebra accessible ici: https://www.geogebra.org/calculator/wzgvxpsg. On peut y faire varier les points A, B, C, et voir comment les autres évoluent. On obtient la figure suivante :



3. a) Comme ABCD est un parallélogramme, alors $\overrightarrow{AD} = \overrightarrow{BC}$.

Comme D est le milieu de [AA'] (par construction du symétrique), alors $\overrightarrow{AD} = \overrightarrow{DA'}$.

Et ainsi $\overrightarrow{DA'} = \overrightarrow{BC}$, donc $\overrightarrow{DBCA'}$ est un parallélogramme.

Et finalement on trouve bien : $\overrightarrow{A'C} = \overrightarrow{DB}$.

b) Comme B est le milieu de [OO'] (par construction du symétrique), alors $\overrightarrow{OB} = \overrightarrow{BO'}$.

Comme O est le milieu de [BD] (comme centre du parallélogramme ABCD), alors $\overrightarrow{DO} = \overrightarrow{OB}$.

En additionnant ces égalités, on a : $\overrightarrow{DO} + \overrightarrow{OB} = \overrightarrow{OB} + \overrightarrow{BO}'$.

Et finalement, par relation de Chasles, on trouve bien : $\overrightarrow{DB} = \overrightarrow{OO'}$.

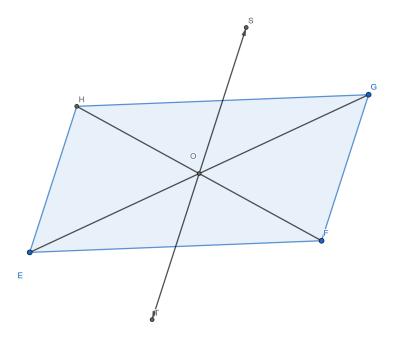
c) En combinant le a) et le b), on trouve que $\overrightarrow{A'C} = \overrightarrow{OO'}$, c'est-à-dire que A'CO'O est un parallélogramme.

Les diagonales d'un parallélogramme se coupent en leur milieu, donc le milieu de [OC] est aussi le milieu de [A'O'].

Et ainsi : I est le milieu de [A'O'].

Exercice 78 p.154

1. On a fait une construction sur Geogebra accessible ici : https://www.geogebra.org/calculator/usvk2djn. On peut y faire varier les points E, F, G, et voir comment les autres évoluent. On obtient la figure suivante :



Pour construire le point T, comme $\overrightarrow{OT} = \overrightarrow{OE} + \overrightarrow{OF}$, alors on peut utiliser que :

- T est l'image de O par les translations de vecteurs \overrightarrow{OE} et \overrightarrow{OF} ;
- le quadrilatère *OETF* est un parallélogramme.

On construit de même le point S, en utilisant que OGSH est un parallélogramme.

2. Suivant les définitions de T et S, on a :

$$\overrightarrow{OT} + \overrightarrow{OS} = \overrightarrow{OE} + \overrightarrow{OF} + \overrightarrow{OG} + \overrightarrow{OH} = \overrightarrow{OE} + \overrightarrow{OG} + \overrightarrow{OF} + \overrightarrow{OH}$$

où on a juste interverti les vecteurs dans la somme.

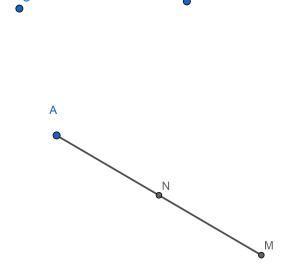
On utilise ensuite que EFGH est un parallélogramme de centre O:

- O est le milieu de [EG], donc $\overrightarrow{OE} + \overrightarrow{OG} = \overrightarrow{0}$;
- O est le milieu de [FH], donc $\overrightarrow{OF} + \overrightarrow{OH} = \overrightarrow{0}$. Et finalement : $\overrightarrow{OT} + \overrightarrow{OS} = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0}$.

Et donc O est le milieu de [TS].

Exercice 82 p.154

Même si ce n'était pas demandé, on a fait une construction sur Geogebra accessible ici: https://www.geogebra.org/calculator/j2yhd2c5. On peut y faire varier les points A, B, C, et voir comment les autres évoluent. On obtient la figure suivante :



1. On a :
$$\overrightarrow{AM} = \overrightarrow{AB} - 2\overrightarrow{AC}$$
 et $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$.

Et donc :
$$\overrightarrow{AN} = \frac{1}{2} \left(\overrightarrow{AB} - 2 \overrightarrow{AC} \right) = \frac{1}{2} \overrightarrow{AM}$$
.

Donc $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AM}$, donc les vecteurs \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires. 2. On en déduit que les points A, M, N sont alignés. On peut même être plus précis : comme $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AM}$, alors N est le milieu de [AM].

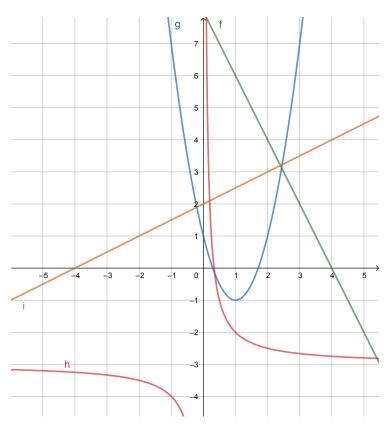
Parcours C

Notions de base sur les fonctions affines.

Exercice 53 p.202

- a) $f(x) = -2x + 8 = (-2) \times x + 8$, donc f est bien affine, avec a = -2 et b = 8.
- b) $g: x \mapsto 2x^2 4x + 1$ n'est pas affine. C'est un peu compliqué à montrer rigoureusement, mais on peut voir que g(0) = 1 et g(1) = -1, et l'unique droite passant par les points (0,1) et (1,-1) correspond à la fonction affine définie par $m(x)=-2\times x+1$. Or,
- on a: m(-1) = 3 et g(-1) = 7, donc g n'est pas affine. c) $h: x \mapsto -3 + \frac{1}{x}$ n'est pas affine, car elle n'est pas définie en 0 alors qu'une fonction affine est définie sur \mathbb{R} entier. d) $i(x) = \frac{2x+8}{4} = \frac{1}{2} \times x + 2$, donc i est bien affine, avec $a = \frac{1}{2}$ et b = 2.

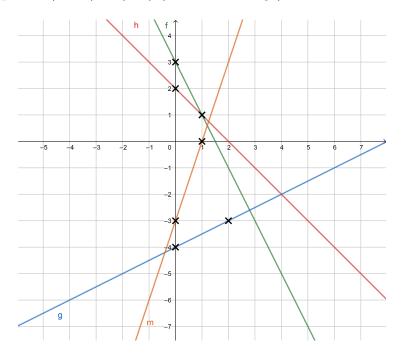
On trace ci-dessous les courbes représentatives des fonctions f (en vert), g (en bleu), h(en rouge), i (en orange). On retrouve bien que, parmi ces courbes, seules celles de f et de i sont des droites : ce sont donc bien les seules fonctions affines.



Exercice 54 p.202

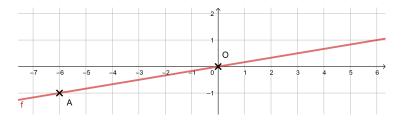
Pour tracer la représentation graphique d'une fonction affine, il suffit de placer deux points de la courbe, et de tracer la droite passant par ces points.

- a) Si $f: x \mapsto -2x + 3$, alors f(0) = 3 et f(1) = 1, donc la courbe de f est la droite passant par les points (0,3) et (1,1) (tracée en vert).
- b) Si $g: x \mapsto \frac{1}{2}x 4$, alors g(0) = -4 et g(2) = -3, donc la courbe de g est la droite passant par les points (0, -4) et (2, -3) (tracée en bleu).
- c) Si $h: x \mapsto 2-x$, alors h(0) = 2 et h(1) = 1, donc la courbe de h est la droite passant par les points (0,2) et (1,1) (tracée en rouge).
- d) Si $m: x \mapsto 3x 3$, alors m(0) = -3 et m(1) = -2, donc la courbe de m est la droite passant par les points (0, -3) et (1, 0) (tracée en orange).



Exercice 81 p.232

Si f est linéaire, alors elle passe par le point (0,0). On peut alors la tracer à l'aide du point A(-6;-1), ce qui donne la droite suivante :

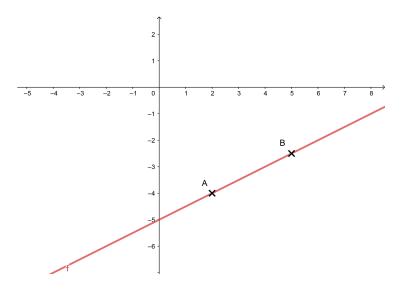


Et on déduit que la fonction f est croissante.

Autre méthode : une fonction affine a toujours le même sens de variation. Comme f est linéaire, alors f(0) = 0. Comme la courbe de f passe par le point A(-6; -1), alors f(-6) = -1. Donc f(-6) < f(0), et f est croissante.

Exercice 82 p.232

Comme f(2) = -4 et $f(5) = -\frac{5}{2}$, alors la courbe de f passe par les points A(2, -4) et $B(5, -\frac{5}{2})$, ce qui donne la droite suivante :



Et on déduit que la fonction f est croissante.

Autre méthode : une fonction affine a toujours le même sens de variation. Comme f(2) = -4 et $f(5) = -\frac{5}{2}$, alors f(2) < f(5), et f est croissante.