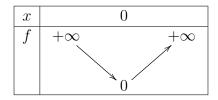
Parcours A

Pour les élèves qui veulent se renforcer sur les fonctions de référence.

Exercice 63 p.231

1. Soit on se souvient directement du tableau de variations, soit on sait le retrouver en traçant la courbe de la fonction carré à la calculatrice, et on trouve comme tableau :



- 2. a) La fonction carré est croissante sur [1,5;6], donc $(1,5)^2 < 6^2$.
- b) La fonction carré est décroissante sur [-0, 7; -0, 082], donc $(-0, 7)^2 > (-0, 082)^2$.
- c) On utilise que $3 < \pi < 4$, et donc $0 < \pi 1 < 4$. De plus, on a $16 = 4^2$. La fonction carré est croissante sur $[\pi 1; 4]$, donc $(\pi 1)^2 < 16$.
- d) On a : $(-1,25)^2 = (-1 \times 1,25)^2 = 1,25^2$. La fonction carré est croissante sur [1,25;2,25], donc $(-1,25)^2 < 2,25^2$.

Exercice 66 p.231

1. Soit on se souvient directement du tableau de variations, soit on sait le retrouvant en traçant la courbe de la fonction inverse à la calculatrice, et on trouve comme tableau :

x	$-\infty$	0	$+\infty$
g	0		0

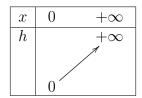
- 2. a) La fonction inverse est décroissante sur [-2,05;-1,95], donc $-\frac{1}{2,05}>-\frac{1}{1,95}$.
- b) On utilise que $1 < \sqrt{2} < 2$, et donc : $0 < 5 \sqrt{2} < 5 + \sqrt{2}$. Et la fonction inverse est décroissante sur $[5 \sqrt{2}; 5 + \sqrt{2}]$, donc $\frac{1}{5 + \sqrt{2}} < \frac{1}{5 \sqrt{2}}$.

1

c) Comme $0.5 = \frac{1}{2}$, et que la fonction inverse est décroissante sur [2; 3], alors $\frac{1}{3} < 0, 5$.

Exercice 72 p.232

1. Soit on se souvient directement du tableau de variations, soit on sait le retrouvant en traçant la courbe de la fonction racine carrée à la calculatrice, et on trouve comme tableau :

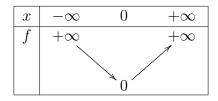


- 2. a) La fonction racine carrée est croissante sur [5; 5, 7], donc $\sqrt{5} < \sqrt{5, 7}$.
- b) La fonction racine carrée est croissante sur [2; 5/2], donc $\sqrt{5} < \sqrt{\frac{5}{2}}$.
- c) On a $7 = \sqrt{49}$. La fonction racine carrée est croissante sur [49; 50], donc $\sqrt{50} > 7$.
- d) On a : $\frac{10}{3} = 3 + \frac{1}{3} > 3 > 2$, 7. La fonction racine carrée est croissante sur [2,7;10/3], donc $\sqrt{\frac{10}{3}} > \sqrt{2,7}$.

Exercice 52 p.202

On donne ici une méthode de résolution avec les tableaux de variation. On peut aussi résoudre les inéquations à l'aide de l'allure des courbes.

a) et b) On rappelle le tableau de variations de la fonction carré, que l'on note f:



Et ainsi:

– pour le a) : f(-3) = f(3) = 9, et f est décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$. Ainsi, on trouve :

$$x^2 \ge 9 \Leftrightarrow x \in]-\infty; -3]$$
 ou $x \in [3; +\infty[\Leftrightarrow x \in]-\infty; -3] \cup [3; +\infty[$

donc l'ensemble solution est $:]-\infty; -3] \cup [3; +\infty[.$

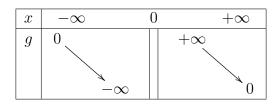
– pour le b) : $f(-\sqrt{5}) = f(\sqrt{5}) = 5$, et f est décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$. Ainsi, on trouve :

2

$$x^2 < 5 \Leftrightarrow x \in]-\sqrt{5};\sqrt{5}[$$

donc l'ensemble solution est :] $-\sqrt{5}$; $\sqrt{5}$ [.

c) et d) On rappelle le tableau de variations de la fonction inverse, que l'on note g:



Et ainsi:

– pour le c) : g(1/5) = 5, et g est décroissante sur $]0; +\infty[$. De plus, g ne prend que des valeurs négatives (donc inférieurs à 5) sur $]-\infty;0[$. Ainsi, on trouve :

$$\frac{1}{x} < 5 \Leftrightarrow x \in]-\infty; 0[\text{ ou } x \in]1/5; +\infty[\Leftrightarrow x \in]-\infty; 0[\cup]1/5; +\infty[$$

donc l'ensemble solution est : $]-\infty;0[\cup]1/5;+\infty[.$

– pour le d) : f(-1/2) = -2, et g est décroissante sur $]-\infty;0]$. De plus, g ne prend que des valeurs positives (donc supérieurs ou égales à 2) sur $]0;+\infty[$. Ainsi, on trouve :

$$\frac{1}{x} \geq -2 \Leftrightarrow x \in]-\infty; -1/2] \text{ ou } x \in]0; +\infty[\Leftrightarrow x \in]-\infty; -1/2] \cup]0; +\infty[$$

donc l'ensemble solution est :] $-\infty; -1/2] \cup]0; +\infty[.$

e) et f) On rappelle le tableau de variations de la fonction racine carrée, que l'on note h :

x	$0 + \infty$	
h	$+\infty$	
	7	
	0	

Et ainsi:

– pour le e): h(9) = 3, et h est croissante sur $[0; +\infty[$. Ainsi, on trouve:

$$\sqrt{x} < 3 \Leftrightarrow x \in [0; 9]$$

donc l'ensemble solution est : [0; 9].

– pour le f) : h(81) = 9, et h est croissante sur $[0; +\infty[$. Ainsi, on trouve :

$$\sqrt{x} > 9 \Leftrightarrow x \in]81; +\infty[$$

donc l'ensemble solution est :]81; $+\infty$ [.

Parcours B

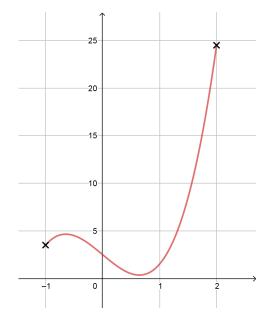
Pour ceux qui veulent se renforcer sur l'utilisation de la calculatrice.

Exercice 44 p.228

le tableau suivant :

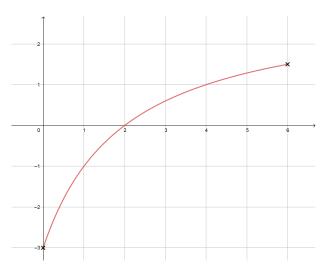
- a) On trace la fonction f sur [-1;2] : on constate qu'elle est :
- croissante sur [-1; -0, 7] et sur [0, 7; 2];
- décroissante sur [-0,7;0,7]; avec des valeurs approchées (comme on ne tombe pas pile sur des carreaux). Avec comme valeurs : f(-1) = 3,5; $f(-0,7) \simeq 4,5$; $f(0,7) \simeq 0,5$; f(2) = 24,5. Et on trouve

x	-1	-0, 7	0,7	2
f		4,5		24, 5
				1
	3,5		0,5	

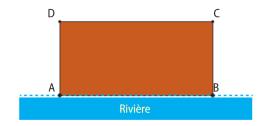


b) On trace la fonction g sur [0;6], et on voit qu'elle est croissante. On trouve comme valeurs : g(0) = -3 et g(6) = 1, 5. On trouve le tableau suivant :

x	0	6
f		1, 5
	/	1
	-3	



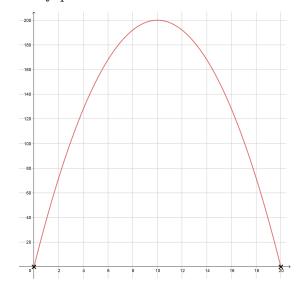
Exercice 88 p.233



- 1. Si x=5, alors AD=BC=5. Et donc DC=40-5-5=30. Et donc l'aire du rectangle est $5\times 30=150$.
- 2. Comme AD = x = BC, et que l'on a 40m de clôture, alors on déduit que : $0 \le 2x \le 40$, c'est-à-dire que $x \in [; 20]$.
- 3.Comme AD=x, et que ABCD est un rectangle, alors BC=x. Et donc DC=40-2x. Et finalement :

$$f(x) = x \times (40 - 2x).$$

4. On trace la courbe de f pour x allant de 0 à 20. On trouve :



Et donc l'aire maximale qu'Aya pourrait obtenir semble être de $200m^2$ (atteinte pour x=10).

5. a) On développe l'expression proposée. On a :

$$-2(x-10)^2 + 200 = -2 \times (x^2 - 20x + 100) + 200 = -2x^2 + 40x - 200 + 200 = x \times (40 - 2x) = f(x).$$

b) On utilise qu'un carré est positif ou nul, et on donc $(x-10)^2 \ge 0$. On a alors :

$$(x-10)^2 \ge 0 \Leftrightarrow -2(x-10)^2 \le 0$$

 $\Leftrightarrow -2(x-10)^2 + 200 \le 200$

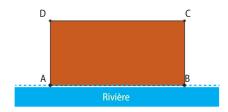
Cette dernière inégalité nous dit que f(x) vaut au plus 200. Comme f(10) = 200, alors le maximum de f est bien de 200.

5

Parcours C

Pour les élèves à l'aise avec les fonctions et la calculatrice, ou qui veulent travailler la notion de maximum.

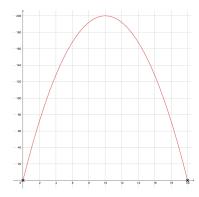
Exercice 88 p.233



- 1. Si x=5, alors AD=BC=5. Et donc DC=40-5-5=30. Et donc l'aire du rectangle est $5\times 30=150$.
- 2. Comme AD=x=BC, et que l'on a 40m de clôture, alors on déduit que : $0 \le 2x \le 40$, c'est-à-dire que $x \in [;20]$.
- 3.Comme AD=x, et que ABCD est un rectangle, alors BC=x. Et donc DC=40-2x. Et finalement :

$$f(x) = x \times (40 - 2x).$$

4. On trace la courbe de f pour x allant de 0 à 20. On trouve :



Et donc l'aire maximale qu'Aya pourrait obtenir semble être de $200m^2$ (atteinte pour x = 10).

5. a) On développe l'expression proposée. On a :

$$-2(x-10)^2 + 200 = -2 \times (x^2 - 20x + 100) + 200 = -2x^2 + 40x - 200 + 200 = x \times (40 - 2x) = f(x).$$

b) On utilise qu'un carré est positif ou nul, et on donc $(x-10)^2 \geq 0$. On a alors :

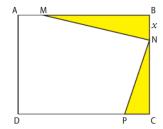
$$(x-10)^2 \ge 0 \Leftrightarrow -2(x-10)^2 \le 0$$

 $\Leftrightarrow -2(x-10)^2 + 200 \le 200$

Cette dernière inégalité nous dit que f(x) vaut au plus 200. Comme f(10) = 200, alors le maximum de f est bien de 200.

6

Exercice 90 p.233



- 1. Le choix de x apparaît trois fois, ce qui nous donne deux conditions :
- comme $M \in [AB]$ avec AM = x, alors $x \in [0; 10]$ (car AB = 10);
- comme $N \in [BC]$ avec BN = x, alors $x \in [0, 8]$ (car BC = 8);
- comme $P \in [CD]$ avec CP = x, alors $x \in [0; 10]$ (car DC = 10);

et donc, en rassemblant ces conditions : $x \in [0; 10] \cap [0; 8] \cap [0; 10]$ (où les \cap correspondent aux "et" qui relient ces conditions), et donc : $x \in [0; 8]$.

2. Comme $M \in [AB]$ avec AM = x et AB = 10, alors : BM = 10 - x.

Comme $N \in [BC]$ avec BN = x et BC = 8, alors : CN = 8 - x.

- 4. Le triangle BMN est rectangle en B, avec BM = 10 x et BN = x, et ainsi son aire est égale à : $\frac{(10-x)\times x}{2} = \frac{10x-x^2}{2}$ (en développant).
- 5. Pour calculer la surface jaune, il faut additionner les aires des triangles BMN et NPC. On a déjà calculé l'aire de BMN. La même méthode montre que l'aire du triangle NPC est égale à : $\frac{8x-x^2}{2}$.

Et finalement l'aire totale de la surface jaune est de :

$$\frac{10x - x^2}{2} + \frac{8x - x^2}{2} = \frac{18x - 2x^2}{2} = 9x - x^2$$

qui est bien la formule donnée.

6. a) On développe l'expression proposée. On trouve, grâce à l'identité remarquable $(a-b)^2=a^2-2ab+b^2$ que :

$$-(x-4,5)^2 + 20,25 = -x^2 + 9x - 20,25 + 20,25 = 9x - x^2 = f(x).$$

b) Un carré étant toujours positif, on constate déjà que, peu importe la valeur de x, on a : $(x-4,5)^2 \ge 0$.

Or, on a les équivalences :

$$(x-4,5)^2 > 0 \Leftrightarrow -(x-4,5)^2 < 0 \Leftrightarrow -(x-4,5)^2 + 20,25 < 20,25 \Leftrightarrow f(x) < 20,25$$

et donc la valeur maximale que peut prendre f est de 20, 25.

Pour montrer que cette valeur est bien prise, il suffit de trouver un x pour lequel f(x) = 20, 25. Mais on a directement que :

$$f(4,5) = -0^2 + 20,25 = 20,25$$

7

et donc la valeur maximale de la surface jaune est de 20, 25, atteinte pour x = 4, 5.